Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal location of interline power flow controller in a power system network using ABC algorithm

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper proposes a methodology based on installation cost for locating the optimal position of interline power flow controller (IPFC) in a power system network. Here both conventional and non conventional optimization tools such as LR and ABC are applied. This methodology is formulated mathematically based on installation cost of the FACTS device and active power generation cost. The capability of IPFC to control the real and reactive power simultaneously in multiple transmission lines is exploited here. Apart from locating the optimal position of IPFC, this algorithm is used to find the optimal dispatch of the generating units and the optimal value of IPFC parameters. IPFC is modeled using Power Injection (PI) model and incorporated into the problem formulation. This proposed method is compared with that of conventional LR method by validating on standard test systems like 5-bus, IEEE 30-bus and IEEE 118-bus systems. A detailed discussion on power flow and voltage profile improvement is carried out which reveals that incorporating IPFC into power system network in its optimal location significantly enhance the load margin as well as the reliability of the system.
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
  • Department of Electrical and Electronics Engineering National Institute of Technology, Trichy-15, India,
  • [1] Hingorani N.G., Gyugyi L., Understanding FACTS: Concepts and Technology of Flexible AC TransmissionSystems. Wiley-IEEE Press (1999).
  • [2] Nogal T.Ł., Machowski J., WAMS - based control of series FACTS devices installed in tie-lines ofinterconnected power system. Archives of Electrical Engineering: 59(3-4): 121-140 (2010).
  • [3] Saravanan M., Mary Raja Slochanal S., Venkatesh P., Prince Stephen Abraham J., Application ofparticle swarm optimization technique for optimal location of FACTS devices considering cost ofinstallation and system loadability. Electric Power Systems Research 77: 276-283 (2007).
  • [4] Lie T.T., Deng W., Optimal Flexible AC Transmission Systems (FACTS) devices allocation. Electrical Power & Energy Systems 9:129-134 (1997).
  • [5] Cai L.J., Erlich I., Optimal choice and allocation of FACTS devices using genetic algorithms. Proceedings on Twelfth Intelligent Systems Application to Power Systems Conference, pp. 1-6 (2003).
  • [6] Sarvi M., Sedighizadeh M., Qarebaghi J., Optimal Location and Parameters Setting of UPFC Basedon Particle Swarm Optimization for Increasing Loadability. International Review of Electrical Engineering 5(5): 2234-2240 (2010).
  • [7] Bekri O.L., Fellah M.K., Benkhoris M.F., Miloudi A., Voltage Stability Enhancement by OptimalSVC and TCSC Location Via CP Flow Analysis. International Review of Electrical Engineering 5(5): 2263-2270 (2010).
  • [8] Zuwei Yu, Lusan D., Optimal placement of FACTs devices in deregulated systems considering linelosses. Electrical Power and Energy Systems 26: 813-819 (2004).
  • [9] Umapom Kwannetr, Uthen Leeton, Thanatchai Kulworawanichpong, Optimal Power Flow UsingArtificial Bees Algorithm. 2010 International Conference on Advances in Energy Engineering, pp: 215-218 (2010).
  • [10] Karaboga D., Basturk B., Artificial Bee Colony (ABC) Optimization Algorithm for Solving ConstrainedOptimization Problems. Springer-Verlag, pp. 789-798 (2007).
  • [11] Teerathana S., Yokoyama A., An optimal power flow control method of power system using interlinepower flow controller (IPFC). TENCON 2004. IEEE Region 10 Conference 3: 343-346 (2004).
  • [12] Khalid. H., Mohamed, K.S. Rama Rao, Intelligent Optimization Techniques for Optimal PowerFlow using IPFC. PECon 2010, pp. 300-305 (2010).
  • [13] Basu M., Optimal power flow with FACTS devices using differential evolution. Electrical Power and Energy Systems 30: 150-156 (2008).
  • [14] X. P. Zhang, Modeling of the interline power flow controller and the generalized unified power flowcontroller in Newton power flow. IEE Proc.-Gener. Transmission and Distribution 150(3), (2003).
  • [15] Jianhong Chen, Tjing T. Lie, D.M. Vilathgamuwa, Basic Control of Interline Power Flow Controller. IEEE, Int. Conf on Power electronics, India, pp 1-7 (2002).
  • [16] Laszlo Gyugyi, Kalyan K. Sen, Colin D. Schauder, The Interline Power Flow Controller Concept:A New Approach to Power Flow Management in Transmission System. IEEE Trans. Power Delivery 14(3): 1115-1123 (1999).
  • [17] Messaoud Belazzoug, Mohamed Boudour, Karim Sebaa, FACTS location and size for reactivepower system compensation through the multi-objective optimization. Archives Control Sciences 20(4): 473-489 (2010).
  • [18] Karaboga D., A powerful and efficient algorithm for numerical function optimization:artificial beecolony (ABC) algorithm. Journal of Global Optim. 39: 459-471 (2007).
  • [19] X.P. Zhang, Modeling of the interline power flow controller and the generalized unified power flowcontroller in Newton power flow. IEE Proc.-Gener. Transmission and Distribution 150(3) (2003).
  • [20] Yuryevich I., Wong K.P., Evolutionary programming based optimal power flow algorithm. IEEE Trans of power system 14(4): 1245-50 (1999).
  • [21] Chandrasekaran K., Hemamalini S., Simon S.P., Prasad Padhy N., Thermal unit commitment usingbinary/real coded artificial bee colony algorithm. Electric Power System Research 84: 109-119 (2012).
  • [22] Karaboga D., Basturk B., On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8: 687-697 (2007).
  • [23] Acha E., Fuerte-Esquivel C.R., Ambriz-Perez H., Cesar Angeles-CamachoG.W., FACTS: Modellingand Simulation in Power Networks. John Wiley & Sons (2004).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.