Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of the integration of Energy Storage Systems (ESS) for utility grid support

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Zintegrowane systemy magazynowania energii - przegląd stanu wiedzy
Języki publikacji
Energy storage systems (ESS) have recently become an indispensable solution to many operational issues related to the integration of distributed generation (DG) technologies in electricity grids. Most of the applications are in the form of power quality mitigation and management of the energies between DG and electricity grids. This paper presents a review of the present status of worldwide applications and recent research on ESS. Of particular interest is the deployment of battery energy storage system (BESS) technologies for utility grid support and the approaches used in power system simulation studies. BESS steady state and dynamic modelling methods are also discussed.
W artykule zaprezentowano przegląd stanu wiedzy na temat zastosowań i badań układów magazynowania energii ESS. Szczególną uwagę zwrócono na układy z ogniwami w zastosowaniu jako element zintegrowanej sieci. (Zintegrowane systemy magazynowania energii – przegląd stanu wiedzy)
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
  • [1] Sawin J., Martinot E., and Appleyard D. Renewables continue remarkable growth,>
  • [2] KeTTHA. Minister of Energy, Green Technology and Water Announces Revised Launcing Date for the Implementation of Feed-In-Tariff System [Online], <>
  • [3] Author N., Review of electrical energy storage technologies and systems and of their potential for the UK. EA Technology, (2004), 1-34. PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 10a/2012 191
  • [4] Ibrahim H., Ilinca A., and Perron J., Energy storage systems -Characteristics and comparisons. Renewable and Sustainable Energy Reviews, 12(2008) No. 5, 1221-1250.
  • [5] Connolly D., A review of the energy storage technologies for the integration of fluctuating renewable energy. University of Limerick, (2009).
  • [6] Divya K.C., Ostergaard Jacob, Battery energy storage technology for power systems - An overview. Electric Power Systems Research, 79(2009) No. 4, 511-520.
  • [7] Doughty D.H., et al., Batteries for large-scale stationary electrical energy storage. (2010), 49-53.
  • [8] Gyuk I., et al., The united states of storage. IEEE Power and Energy Magazine, 3(2005) No. 2, 31-39.
  • [9] Baran M.E., et al., STATCOM with energy storage for smoothing intermittent wind farm power,Proceedings of IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, 1-6.
  • [10] Tiwari H.P. and Gupta S.K., DC Energy Storage Schemes for DVR Voltage Sag Mitigation System. International Journal of Computer Theory and Engineering, 2(2010) No. 3, 313-318.
  • [11] Bhatia R.S., Jain S.P., and Singh B., Battery energy storage system for power conditioning of renewable energy sources,Proceedings of International Conference on Power Electronics and Drives Systems, 2005, 501-506.
  • [12] Jantharamin N. and Zhang L., A new dynamic model for lead acid batteries,Proceedings of 4th IET Conference on Power Electronics, Machines and Drives, 2008, 86-90.
  • [13] Ceraolo M., New dynamical models of lead acid batteries. IEEE Transactions on Power Systems, 15(2000) No. 4, 1184-1190.
  • [14] Chan H.L. and Sutanto D., A new battery model for use with battery energy storage system and electric vehicle power systems,Proceedings of IEEE Power Engineering Society Winter Meeting, 2000, 470-475.
  • [15] Codeca F., Savaresi S.M., and Rizzoni G., On battery state of charge estimation: a new mixed algorithm,Proceedings of 17th IEEE International Conference on Control Applications, 2008, San Antonio, Texas USA, 102-107.
  • [16] Binduhewa P.J., Microsource interface for microgrid. University of Manchester, PhD thesis (2010),
  • [17] Teleke S., Control methods for energy storage for dispatching intermittent renewable energy sources. North Carolina State University, PhD thesis (2009),
  • [18] Puranik S., Control of fuel cell based green energy systems for distributed generation applications. The Ohio State University, PhD thesis (2009),
  • [19] Poonpun P. and Jewell W.T., Analysis of the cost per kilowat hour to store electricity. IEEE Transactions on energy conversion, 23(2008) No. 2, 529-534.
  • [20] Paska J., Biczel P., and Klos M., Technical and economic aspects of electricity storage systems co-operating with renewable energy sources,Proceedings of 10th Int. Conf. On Electric Power Quality and Utilisation, 2009, Lodz Poland, 1-6.
  • [21] Energy Storage Association E. Technologies [Online],
  • [22] J Power Co E. Okinawa sea water pumped storage, Japan
  • [23] Rahul W. and Jay A., Market analysis of emerging electric storage systems. Carnegie Mellon Electric Ind. Center, (2008).
  • [24] Omar R. and Rahim N.A., Implementation and control of a dynamic voltage restorer using Space Vector Pulse Width Modulation (SVPWM) for voltage sag mitigation,Proceedings of International Conference for Technical Postgraduates, 2009, Kuala Lumpur, Malaysia, 1-6.
  • [25] Virulkar V. and Aware M., Analysis of DSTATCOM with BESS for mitigation of flicker,Proceedings of International Conference on Control, Automation, Communication and Energy Conservation, 2009, Perundurai, Tamilnadu, 1-7.
  • [26] Moore T. and Douglas J., Energy storage - big opportunities on a smaller scale. EPRI Jurnal, (2006) No., 16-23.
  • [27] Lazarewicz M., Ryan L., and M. T., Integration of flywheelbased energy storage for frequency regulation in deregulated markets,Proceedings of IEEE Power and Energy Society General Meeting, 2010, Minneapolis, MN 4-9.
  • [28] Lu N., Weimar M.R., and Makarov Y.V., An evaluation of the flywheel potential for providing regulation service in California,Proceedings of IEEE Power and Energy Society General Meeting, 2010, Minneapolis, MN 1-6.
  • [29] Hsu C.S. and Lee W.J., Superconducting magnetic energy storage for power system applications. IEEE Transactions on Industry Applications, 29(1993) No. 5, 990-996.
  • [30] Ribeiro P.F., et al., Energy storage systems for advanced power applications. Proc. of the IEEE, 89 (2001) 1744-1756.
  • [31] Rogers J.D., Schermer, R. I., Miller, B. L., Hauer, J. F., 30-MJ superconducting magnetic energy storage system for electric utility transmission stabilization. Proceedings of the IEEE, 71(1983) No. 9, 1099-1107.
  • [32] Chen S.-s., et al., Power-flow control and transient-stability enhancement of a large-scale wind power generation system using a superconducting magnetic energy storage (SMES) unit,Proceedings of IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, Pittsburgh, PA, 1-6.
  • [33] Ngamroo I., et al., Stabilization of tie-line power oscillations by robust SMES in interconnected power system with large wind farms,Proceedings of Asia and Pacific Transmission & Distribution Conference & Exposition, 2009, Seoul, , 1-4.
  • [34] Vazquez S., et al., Energy storage systems for transport and grid applications. IEEE Transactions on Industrial Electronics, 57(2010) No. 12, 3881-3895.
  • [35] Hanley C., et al., Technology development needs for integrated grid-connected PV systems and electric energy storage,Proceedings of 34th IEEE Photovoltaic Specialists Conference (PVSC), 2009, Philadelphia, PA 1832-1837.
  • [36] Kamibayashi M., Nichols D.K., and Oshima T., Development update of the NAS battery, Proceedings of IEEE/PES Transmission and Distribution Conference and Exhibition, 2002, 1664-1668.
  • [37] Kawakami N., et al., Development and field experiences of stabilization system using 34MW NAS batteries for a 51MW wind farm,Proceedings of IEEE International Symposium on Industrial Electronics (ISIE), 2010, Bari, Italy, 2371-2376.
  • [38] Boer P.D. and Raadschelders J., Flow batteries. Leonardo Energy, (2007), 1-9.
  • [39] Onoda Y., et al., Development of reliable and long life VRLA batteries,Proceedings of Twenty-Third International Telecommunications Energy Conference (INTELEC), 2001, Edinburgh, UK, 14-18.
  • [40] Liu X. and Wang W., VRLA battery system reliability and proactive maintenance,Proceedings of 32nd International Telecommunications Energy Conference (INTELEC), 2010, Orlando, FL, USA, 1-7.
  • [41] Tsujikawa T., Yabuta K., and Matsushita T., Development of VRLA battery capacity estimation system,Proceedings of 29th International Telecommunications Energy Conference, INTELEC, 2007, Rome, Italy, 788-793.
  • [42] LaMonica M. A123 spinoff 24M funded for novel energy storage
  • [43] Kramer W., et al., Advanced power electronic interfaces for distributed energy systems part 1 : systems and topologies. National Renewable Energy Laboratory (NREL), (2008).
  • [44] Coppez G., The Importance of energy storage in renewable power generation : A review,Proceedings of 45th International Universities Power Engineering Conference (UPEC), 2010, Cardiff, Wales, 1-6.
  • [45] Stevens J. and Schenkman B., DC energy storage in the CERTS microgrid. Sandia National Laboratories, (2008).
  • [46] Copetti J.B., Lorenzo E., and Chenlo F., A general battery model for PV system simulation. Progress on Photovoltaics: Research and Application, 1(1993) No. 4, 283-292.
  • [47] Olivier T. and Louis A.D., Experimental validation of a battery dynamic model for EV applications. World Electric Vehicle Journal Vol 3. - 2009 AVERE, 3(2009) No., 1-10.
  • [48] Barsali S. and Ceraolo M., Dynamical models of lead-acid batteries: implementation issues. IEEE Transactions on energy conversion, 17(2002) No. 1, 16-23.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.