Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BPP3-0003-0070

Czasopismo

Fasciculi Mathematici

Tytuł artykułu

Well-posedness of the fixed point problem for ø-max-contractions

Autorzy Akkouchi, M. 
Treść / Zawartość http://www.math.put.poznan.pl/fasciculi_m.htm
Warianty tytułu
Języki publikacji EN
Abstrakty
EN We study the well-posedness of the fixed point problem for self-mappings of a metric space which are ø-max-contractions (see [6]).
Słowa kluczowe
PL punkt stały   przestrzeń metryczna   przestrzeń zupełna  
EN well-posedness   fixed point problem   fixed points   metric spaces   orbitally complete spaces  
Wydawca Wydawnictwo Politechniki Poznańskiej
Czasopismo Fasciculi Mathematici
Rocznik 2010
Tom Nr 45
Strony 5--12
Opis fizyczny Bibliogr. 15 poz.
Twórcy
autor Akkouchi, M.
  • Université Cadi Ayyad Faculté des Sciences-Semlalia Département de Mathématiques Av. Prince My Abdellah, BP. 2390 Marrakech, Maroc (Morocco) akkouchimo@yahoo.f, akkouchimo@yahoo.fr
Bibliografia
[1] De Blasi F.S., Myjak J., Sur la porosité des contractions sans point fixe, C. R. Acad. Sci. Paris, 308(1989), 51-54.
[2] Boyd D.W., Wong J.S., On nonlinear contractions, Proc. Amer. Math. Soc., 20(1969), 458-469.
[3] Ćirić Lj.B., On some maps with non-unique fixed points, Publ. Inst. Math. (Beograd), 13(31)(1974), 52-58.
[4] Ćirić Lj.B., A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
[5] Ćirić Lj.B., Fixed points of asymptotically regular mappings, Math. Communications, 10(2005), 111-114.
[6] Daneš J., Two fixed point theorems in topological and metric spaces, Bull. Austral. Math. Soc., 14(1976), 259-265.
[7] Daneš J., Some fixed point theorems in metric and Banach spaces, Comment. Math. Univ. Carolinae, 12(1971), 37-51.
[8] Lahiri B.K., Das P., Well-posednes and porosity of certain classes of operators, Demonstratio Math., 38(1)(2005), 169-176.
[9] Massa S., Generalized contractions in metric spaces, Boll. Un. Mat. Ital., 10(1974), 689-694.
[10] Popa V., Well-Posedness of Fixed Point Problem in Orbitally Complete Metric Spaces, Stud. Cerc. St. Ser. Mat. Univ. Bacău, 16(2006), Supplement, 209-214.
[11] Popa V., Well-Posedness of Fixed Point Problem in Compact Metric Spaces, Bul. Univ. Petrol-Gaze, Ploiesti, Ser. Matem. Inform. Fiz. LX, 1(2008), 1-4.
[12] Reich S., Zaslavski A.J., Well-posednes of fixed point problems, Far East J. Math. Sci., Special volume 2001, Part III, (2001), 393-401.
[13] Sharma P.L., Yuel A.K., Fixed point theorems under asymptotic regularity at a point, Math. Sem. Notes, 35(1982), 181-190.
[14] Turkoglu D., Ozer O., Fisher B., Fixed point theorems for T-orbitally complete spaces, Stud. Cerc. St. Ser. Mat., Univ. Bacău, 9(1999), 211-218.
[15] Sehgal V.M., On fixed and periodic point for a class of mappings, J. London Math. Soc., 2(5)(1972), 571-576.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPP3-0003-0070
Identyfikatory