PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An agent-based, self-tuning, population learning algorithm for the resource constrained project scheduling

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The authors propose an agent-based population-learning algorithm (PLA) designed for solving the RCPSP and the MRCPSP. The paper contains problem formulation and a description of the proposed implementation of the PLA. The resulting multiple-agent system has been implemented using the JABAT environment designed with a view to facilitate development of a-teams. To validate the approach a computational experiment has been earned out. It has involved instances obtained from the available benchmark data sets. Results of the experiment show that the proposed implementation can serve as an effective tool for solving the resource-constrained project scheduling problems.
Rocznik
Strony
213--225
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
  • Department of Information Systems, Gdynia Maritime University, Poland, pj@am.gdynia.pl
Bibliografia
  • [1] Aydin M.E., Fogarty T.C., Teams of autonomous agents for job-shop scheduling problems: An Experimental Study, Journal of Intelligent Manufacturing, 15, 4, 2004, 455-162.
  • [2] Bellifemine F., Caire G., Poggi A., Rimassa G., JADE. A White Paper, Exp 3, 3, 2003, 6-20.
  • [3] Blazewicz J., Lenstra J., Rinnooy Kan A., Scheduling subject to resource constraints: Classification and complexity, Discrete Applied Mathematics, 5, 1983, 11-24.
  • [4] Chang-Shing Lee, Chen-Yu Pan, An intelligent fuzzy agent for meeting scheduling decision support system, Elsevier, Fuzzy Sets and Systems, 142, 2004, 467^-88.
  • [5] Czarnowski J., Jedrzejowicz P., Ratajczak E., Population learning algorithm - example implementations and experiments, 4th Metaheuristics Internetional Conference (MIC), Porto, Portugal, 2001, 607-612.
  • [6] Hartmann S., Kolisch R., Experimental investigation of heuristics for resource-constrained project scheduling: An update, European Journal of Operational Research, 174, 2006, 23-37.
  • [7] Jedrzejowicz P., Social learning algorithm as a tool for solving some difficult scheduling problems, Foundation of Computing and Decision Sciences, 24, 2, 1999, 51-66.
  • [8] Jedrzejowicz P., Ratajczak E., Population learning algorithm for resource-constrained project scheduling in D.W. Pearson, N.C. Steele, R.F.Albrecht (eds.), Artificial Neural Nets and Genetic Algorithms, Springer Computer Science, Wien, 2003, 223-228.
  • [9] Jedrzejowicz P., Wierzbowska I., JADE-Based A-Team Environment, Lecture Notes in Computer Science, Springer Berlin/Heidelberg 3993,2006, 719-726.
  • [10] Jedrzejowicz P., Ratajczak E., Population learning algorithm for the resource-constrained project scheduling, Jozefowska J., Węglarz J. (eds.), Perspectives in Modern Project Scheduling, Springer Science+Business Media LLC, 2006.
  • [11] PSPLIB, http://129.187.I06.231/psplib.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0079-0068
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.