Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BPP1-0059-0066

Czasopismo

Foundations of Computing and Decision Sciences

Tytuł artykułu

Accelerating the relevance vector machine via data partitioning

Autorzy Ben-Shimon, D.  Shmilovici, A. 
Treść / Zawartość http://www.degruyter.com/view/j/fcds
Warianty tytułu
Konferencja ADBIS Workshop on Data Mining and Knowledge Discovery (ADMKD'2005) / sympozjum [1st; September 15-16, 2005; Tallinn, Estonia]
Języki publikacji EN
Abstrakty
EN The Relevance Vector Machine (RVM) is a method for training sparse generalized linear models, and its accuracy is comparably to other machine learning techniques. For a dataset of size N the runtime complexity of the RVM is O(NJ) and its space complexity is O(N2) which makes it too expensive for moderately sized problems. We suggest three different algorithms which reduce the runtime complexity to O(N") via partitioning the dataset into small chunks of size P. A heuristic is presented for selecting the chunk size. Extensive experiments with benchmark datasets indicate that the partition algorithms can significantly reduce the complexity of the RVM while retaining the attractive attributes of the original solution.
Słowa kluczowe
EN machine learning   data mining   relevance vector machine  
Wydawca Wydawnictwo Politechniki Poznańskiej
Czasopismo Foundations of Computing and Decision Sciences
Rocznik 2006
Tom Vol. 31, No. 1
Strony 27--41
Opis fizyczny Bibliogr. 7 poz.
Twórcy
autor Ben-Shimon, D.
autor Shmilovici, A.
  • Department of Information Systems Engineering, Ben-Gurion University, P.O. Box 653, 84105 Beer-Sheva, Israel, dudibs@bgumail.bgu.ac.il
Bibliografia
[1] Cristianini N., Shawe-Taylor J., An Introduction to Support Vector Machines and other kernel-based learning methods, Cambridge University Press, New York. NY, 1999.
[2] Down T.A., Hubbard T.J.P., Relevance Vector Machines for Classifying Points and Regions in Biological Sequences, Wellcome Trust, Sanger Institute, 2003.
[3] Rasmussen C. E., Quinonero-Candela J., Healing the Relevance Vector Machine through Augmentation. Proceedings of the 22nd International Conference on Machine Learning, August 7-11, Bonn, Germany, 2005.
[4] D'Souza A., Vijayakumar S., Schaal S., The Bayesian Backfitting Relevance Vector Machine, Proceedings of the 21st International conference on Machine Learning, July 4-8, Baniff, Canada, 2004.
[5] Tipping M. E., Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research 1. 2001,211 -244.
[6] Tipping M. E., Paul A., Fast Marginal Likelihood Maximization for Sparse Bayesian Models. Proceedings of the 9th International workshop on Artificial Intelligence and Statistics, January 3-6, Key West. Florida, 2003.
[7] Wipf D., Palmer J., Rao B., Perspectives on Sparse Bayesian Learning. Advances in Neural Information Processing systems, 16. Cambridge, Massachussettes, MIT Press, 2004.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPP1-0059-0066
Identyfikatory