Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Przegląd Elektrotechniczny

Tytuł artykułu

Investigation of the Effects of Strips Thickness and Grain Size on AC Magnetic Barkhausen Noise of Grain-oriented Electrical Steel

Autorzy Chukwuchekwa, N.  Moses, A.  Anderson, P. 
Treść / Zawartość
Warianty tytułu
PL Badania wpływu grubości próbki i rozmiaru ziarna na efekt Barkhausena w blachach zorientowanych
Języki publikacji EN
EN The influence of sample thickness and grain size of Conventional Grain-Oriented (CGO) and High Permeability Grain-oriented (HGO) steels on Magnetic Barkhausen Noise (MBN) of Epstein strips has been examined. It might be expected that MBN decreases with increasing sample thickness due to eddy current damping but the measurements show that the average domain width, hence the grain size influences MBN in strips less than 0.35 mm thick. From 0.35 mm and above, both strip thickness and domain width influence MBN in CGO and HGO.
PL Zbadano wpływ grubości próbki i rozmiaru ziarna dla stali konwencjonalnej o ziarnie zorientowanym (CGO) i stali o wysokiej przenikalności i ziarnie zorientowaym (HGO) na paskach Epsteina. Można oczekiwać, że amplituda sygnału Barkhausena MBN zmniejsza się wraz ze wzrostem grubości próbki z uwagi na efekt tłumienia od prądów wirowych, lecz pomiary wykazały, że średnia szerokość domen, związana z rozmiarem ziarna, ma wpływ na MBN w paskach o grubości mniejszej niż 0,35 mm. Dla grubości 0,35 mm i powyżej, grubość paska i szerokość ziarna mają wpływ na MBN zarówno dla stali CGO i HGO.
Słowa kluczowe
PL magnetyczny efekt Barkhausena   stal o ziarnie zorientowanym   prądy wirowe  
EN magnetic Barkhausen noise   grain-oriented electrical steel   eddy current  
Wydawca Wydawnictwo SIGMA-NOT
Czasopismo Przegląd Elektrotechniczny
Rocznik 2012
Tom R. 88, nr 5a
Strony 18--21
Opis fizyczny Bibliogr. 20 poz., rys., tab.
autor Chukwuchekwa, N.
autor Moses, A.
autor Anderson, P.
  • School of Engineering, Cardiff University, United Kingdom
[1] H. Barkhausen, B. Gerausche, Ummagnetisieren von Eisen, Physikal. Zeitschr, 20, 401-403, 1919.
[2] H.V. Patel, S. Zurek, T. Meydan, D.C Jiles, L, Li, A new adaptive automated feedback system for Barkhausen signal measurement, Sensors and Actuators, Vol. 129, 112-117, 2006.
[3] D.C. Jiles, The effect of stress on Magnetic Barkhausen activity in ferromagnetic steels, IEEE Transactions on Magnetics, Vol. 25, No.5, 3455, 1989.
[4] D.C Jiles, Introduction to Magnetism and magnetic materials, Chapman and Hall, New York, 1991.
[5] S. Chikazumi, Physics of Magnetism, Oxford University Press Inc, New York, 1997.
[6] J.W. Shilling, G.L.Jr. House, Magnetic properties and domain structure in grain-oriented 3% Si-Fe, IEEE Transactions on Magnetics, Vol. 10, No. 2, 195-222, 1974.
[7] M.F. Littmann, Structures and magnetic properties of grainoriented 3.2% silicon-iron Journal of Applied Physics, Vol. 38, issue 3, 1104-1108, 1967.
[8] T. Garstka, The influence of product thickness on the measurements by Barkhausen noise method, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 27, Issue 1, 47-50, 2008.
[9] N. Chukwuchekwa, A. Moses and P. Anderson, Effects of strip thickness and silicon content on magnetic Barkhausen noise of non-oriented electrical steel at 50 Hz, Proceedings of International Symposium on Electromagnetics and Mechanics, 7-9 September, 2011, Napoli, Italy.
[10] N. Chukwuchekwa, A. Moses and P. Anderson, Barkhausen noise in grain-oriented 3% Si-Fe at 50 Hz, Journal of Electrical Eng., vol. 61. No. 7/s, 69-72, 2010.
[11] V.E. Iordache, E. Hug, N. Buiron, Magnetic behaviour versus tensile deformation mechanisms in a non-oriented Fe- (3 wt. %) Si steel, Material Science and Engineering, A359, 62-74, 2003.
[12] A.J. Moses, H. V. Patel and P.I. Williams, Challenges in quantifying Barkhausen noise in electrical steel,” Electromagnetic NDE(X) vol. 28, pp. 178-185, 2007.
[13] A. Hubert and R. Shafer, Magnetic domains: the analysis of magnetic microstructures, chapter 2.2, Springer, 1998.
[14] R. Ranjan, D.C. Jiles, Magnetic properties of decarburized steels: An investigation of the effects of grain size and carbon contents, IEEE Transactions on Magnetics, Vol. 23, No.3. 1869-1876, 1987.
[15] D.G Hwang, H.C. Kim, C.G.Kim, K.A.Lee, Barkhausen noise and magnetic properties of highly grain-oriented HiB-8 and conventional 3% Si-Fe polycrystalline specimens.: Journal of Korean Physical Society(1991), Vol. 24, No.6, 493-498, 1991.
[16] Brailsford, F. Physical principles of Magnetism, Chapter 10.2, Van Nostrand, London, 1966.
[17] H. Sakamoto, M. Okada, M. Homma, Theoretical analysis of Barkhausen noise in carbon steels, IEEE Transactions on Magnetics, Vol. 23, No.5, 2236-2238, 1987.
[18] J. Degauque, B. Astie, J.L.Porteseil, and R. Vergne, Predictions of the random potential energy models of domain wall motion, An experimental investigation of high purity iron, Journal of Magnetism and Magnetic Material, Vol. 128, Issue 1-2, 149-153, 1982.
[19] N. Chukwuchekwa, A. Moses and P. Anderson, Study of the effects of surface coating on magnetic Barkhausen noise in grain-oriented Electrical Steel, accepted for publication in IEEE Transactions on Magnetics.
[20] J.W. Shilling, Grain boundary demagnetising fields in 3% Si-Fe, Journal of Applied Physics, Vol. 41, issue 3, 1165-1166, 1976
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPOK-0036-0005