Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BPOH-0050-0007

Czasopismo

Przegląd Elektrotechniczny

Tytuł artykułu

Ant Colony Optimization for Electrical Power System Expansion-Scheduling

Autorzy Hadjeri, S.  Zeblah, A. 
Treść / Zawartość http://pe.org.pl/
Warianty tytułu
PL Optymalizacja rozbudowy systemu energetycznego przy wykorzystaniu algorytmu mrówkowego
Języki publikacji EN
Abstrakty
EN This paper uses an ant colony meta-heuristic optimization method to solve the multi-stage expansion problem for multi-state series-parallel systems. The study horizon is divided into several periods. At each period the demand distribution is forecasted in the form of a cumulative demand curve. A multiple-choice of additional components among a list of available product can be chosen and included into any subsystem component at any stage to improve the system performance. The components are characterized by their cost, performance (capacity) and availability. The objective is to minimize the whole investment-costs over the study period while satisfying availability or performance constraints. A universal generating function technique is applied to evaluate system availability. The ant colony approach is required to identify the optimal combination of adding components with different parameters to be allocated in parallel at each stage.
PL W artykule omówiono metodę optymalizacji wykorzystującą algorytmy mrówkowe. Rozwiązywano problem wielopoziomowej rozbudowy szeregowo-równoległego system zasilania. Horyzont czasowy analizy został podzielony na mniejsze okresy. W każdym okresie potrzeby są prognozowane w postaci kumulacyjnej krzywej potrzeb. Różny wybór dodatkowych składowych systemu był możliwy na każdym etapie analizy. Te składowe były charakteryzowane przez koszt, możliwości i parametry. Celem była minimalizacja całkowitych kosztów inwestycji przy wymuszonych parametrach. Algorytm mrówkowy został wykorzystany do optymalizacji systemu na każdym etapie dodawania nowego elementu.
Słowa kluczowe
PL projekt rozbudowy systemu zasilania   algorytmy mrówkowe   optymalizacja  
EN expansion-scheduling   ant colony   redundancy optimization   multi-state system   universal generating moment function  
Wydawca Wydawnictwo SIGMA-NOT
Czasopismo Przegląd Elektrotechniczny
Rocznik 2008
Tom R. 84, nr 7
Strony 36--42
Opis fizyczny Bibliogr. 25 poz., schem., tab.
Twórcy
autor Hadjeri, S.
autor Zeblah, A.
  • Electrical Engineering Department, university of Sidi Bel Abbes, BP 89 Sidi Jilali, Algeria, hadjeri2@yahoo.fr
Bibliografia
[1] G. Levitin, A. Lisnianski, H. Ben-Haim and D. Elmakis, “Structure optimization of power system with different redundant elements”, Electric Power Systems Research, vol. 43, No. 1, 1997, pp.19-27.
[2] G. Levitin, and A. Lisnianski. “Optimal multistage modernization of power system subjet to reliability and capacity requirements, Electric power system research, 50, (3), pp 183-190, 1999.
[3] I. Ushakov, G. Levitin and A. Lisnianski. Multi-state system reliability: from theory to practice. Proc. of 3 Int. Conf. on mathematical methods in reliability, MMR 2002, Trondheim, Norway, pp. 635-638.
[4] G. Levitin and A. Lisnianski, A new approach to solving problems of multi-state system reliability optimization. Quality and Reliability Engineering International, 2001, vol. 47, No. 2, pp. 93-104.
[5] M. S. Chern, “Ant colony optimization for constraint combinatorial applications, 1992.
[6] F. Tillman, C. Hwang, and W. Kuo. “Optimization Techniques for System Reliability with Redundancy – A review,” IEEE Transactions on Reliability, Vol. R-26, no. 3, 1997, 148-155.
[7] C. Kuo and Prasad,, An Annotated Overview of System-reliability Optimization. IEEE Transactions on Reliability, 2000, Vol. 49, no. 2, 176-187.
[8] I. Ushakov. Optimal standby problems and a universal generating function. Sov. J. Computing System Science, Vol. 25, N 4, 1997, pp 79-82.
[9] A. Lisnianski, G. Levitin, H. Ben-Haim and D. Elmakis. Power system structure optimization subject to reliability constraints. Electric Power Systems Research, vol. 39, No. 2, 1996, pp.145-152.
[10] M. Dorigo, V. Maniezzo and A. Colorni. The Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics- Part B, Vol. 26, No.1, 1996, pp. 1-13.
[11] Y. C. Liang, and A. E. Smith, “An Ant Colony Approach to Redundancy Allocation”, IEEE Transactions on reliability, 2001.
[12] M. Dorigo and L.M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem”, IEEE Transactions on Evolutionary computation, Vol. 1, No.1, 1997, pp. 53-66.
[13] V. Maniezzo and A. Colorni. The Ant System Applied to the Quadratic Assignment Problem. IEEE Transactions on Knowledge and data Engineering, Vol. 11, no. 5, 1999, pp 769-778.
[14] A. Bauer, B. Bullnheimer, R.F. Hartl and C. Strauss. Minimizing Total Tardiness on a Single machine using Ant Colony Optimization. Central European Journal of Operations research, Vol. 8, no. 2, 2000, pp 125-141.
[15] M. Den Besten, T. Stützle and M. Dorigo, 2000, Ant Colony Optimization fort he Total Weighted tardiness Problem. Proceeding of the 6th International Conference on parallel problem Solving from nature (PPSNVI), LNCS 1917, Berlin, 611-620.
[16] Y.C. Liang and A. E. Smith, 2001, An Ant Colony Approach to Redundancy Allocation.
[17] G. Di Caro and M. Dorigo, 1998, Mobile Agents for Adaptive Routing. Proceedings for the 31st Hawaii International Conference On System Sciences, Big Island of Hawaii, pp. 74-83.
[18] D. Costa and A. Hertz, 1997, Ants Can Colour Graphs. Journal of the Operational Research Society, Vol. 48, 295-305.
[19] L. Schoofs and B. Naudts, 2000, Schoofs, L. and B. Naudts, “Ant Colonies are Good at Solving Contraint Satisfaction Problem,” Proceeding of the 2000 Congress on Evolutionary Computation, San Diego, CA, July 2000, 1190-1195.
[20] I.A. Wagner and A. M. Bruckstein. Hamiltonian(t)-An Ant inspired heuristic for Recognizing Hamiltonian Graphs. Proceeding of the 1999 Congress on Evolutionary Compuation, Washington, D.C., 1465-1469.
[21] I. Ushakov, 1986, Universal generating function. Sov. J. Computing System Science, Vol. 24, N 5, pp 118-129.
[22] S.M Ross, 1993, Introduction to probability models. Academic press.
[23] B. Murchland, 1975, Fundamental concepts and relations for reliability analysis of multi-state systems. Reliability and Fault Tree Analysis, ed. R. Barlow, J. Fussell, N. Singpurwalla. SIAM, Philadelphia.
[24] G. Levitin, A. Lisnianski, B. Ben-Haim and D. Elmakis, 1998, Redundancy optimization for series-parallel multi-state systems. IEEE Transactions on Reliability vol. 47, No. 2, pp.165-172.
[25] R. Billinton and R. Allan, 1990, Reliability evaluation of power systems. Pitman.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPOH-0050-0007
Identyfikatory