Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button


Przegląd Elektrotechniczny

Tytuł artykułu

State-of-the-Art High Power Density and High Efficiency DC-DC Chopper Circuits for HEV and FCEV Applications State-of-the-Art High Power Density and High Efficiency DC-DC Chopper Circuits for HEV and FCEV Applications

Autorzy Kawamura, A.  Pavlovsky, M.  Tsuruta, Y. 
Treść / Zawartość
Warianty tytułu
PL Najnowsze obwody przekształtników DC/DC o wysokiej gęstości mocy i wysokiej sprawności dla zastosowań w samochodach elektrycznych z napędem hybrydowym (HEV) i samochodach elektrycznych z ogniwami paliwowymi (FCEV)
Języki publikacji EN
EN Recent environmental issues have accelerated the use of more efficient and energy saving technologies in any area of our daily life. One of the major energy consumptions is in the transportation area, especially in the automobile field. DC/DC chopper circuits for use in hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV) and so on will be discussed in this paper from the view point of power density and efficiency. A typical power range of such converters can be in order of kWs up to over 100 kW with a short term overload requirement of often more than 200 %. Considering the state of the art, switching frequency of these converters is in the range from 50 kHz with IGBTs to 200 kHz with power MOSFETs, the power density peaks at about 25 kW/l, and the highest efficiency is close to 98 [%] depending on the load conditions. As can be seen from the brief introduction, the design of such converter presents multiple challenges from power density as well as efficiency point of view and these are discussed further in the paper.
PL Współczesne wymogi ochrony środowiska naturalnego przyspieszyły wykorzystanie efektywnych i energooszczędnych technologii w przedmiotach powszechnego użytku. Jedną z dziedzin zużywających najwięcej energii jest transport, a zawłaszcza motoryzacja. W artykule przedstawiono analizę gęstości mocy i sprawności przekształtników typu DC/DC do zastosowań w samochodach elektrycznych z napędem hybrydowym (HEV) i samochodach elektrycznych z ogniwami paliwowymi (FCEV). Typowy zakres mocy takich przekształtników rozciąga się od pojedynczych kilowatów do ponad 100 kW, z krótkotrwałą przeciążalnością często przekraczającą 200 %. Biorąc pod uwagę najnowsze rozwiązania, częstotliwość przełączeń takich przekształtników osiąga od 50 kHz dla elementów IGBT, aż po 200 kHz dla tranzystorów mocy typu MOSFET, gęstość mocy osiąga 25 kW/l, a sprawność osiąga nawet 98%, zależnie od warunków obciążenia. W artykule przedyskutowano zagadnienie projektowanie takich przekształtników z punktu widzenia gęstości mocy i sprawności.
Słowa kluczowe
PL przekształtniki DC/DC   gęstość mocy   samochody   napęd elektryczny  
EN DC/DC chopper circuits   hybrid electric vehicles   fuel cell electric vehicles  
Wydawca Wydawnictwo SIGMA-NOT
Czasopismo Przegląd Elektrotechniczny
Rocznik 2008
Tom R. 84, nr 9
Strony 1--13
Opis fizyczny Bibliogr. 40 poz., rys., tab., wykr.
autor Kawamura, A.
autor Pavlovsky, M.
autor Tsuruta, Y.
[1] I. Takahashi and Y. Itoh, "Electrolytic Capacitor-Less PWM In-verter," in Proc. IPEC, Tokyo, Japan, April 2-6, 1990, pp. 131-138.
[2] K. Kuusela, M. Salo, and H. Tuusa, "A Current Source PWM-Converter Fed Permanent Magnet Synchronous Motor Drive with Adjustable DC-Link Current," in Proc. NORPIE, Aalborg, Den-mark, June 15-16, 2000, pp. 54-58.
[3] M. H. Bierhoff and F. W. Fuchs, "Pulse Width Modulation for Current Source Converters - A Detailed Concept," in Proc. 32nd IEEE IECON, Paris, France, Nov. 7-10, 2006.
[4] R. W. Erickson and O. A. Al-Naseem, "A New Family of Matrix Converters," in Proc. 27th IEEE IECON, Denver, CO, Nov. 29-Dec. 2, 2001, vol. 2, pp. 1515-1520.
[5] C. Klumpner and C. I. Pitic, "Hybrid Matrix Converter Topologies: An Exploration of Benefits," in Proc. 39th IEEE PESC, Rhodos, Greece, June 15-19, 2008, pp. 2-8.
[6] C. Klumpner, "Hybrid Direct Power Converters with In- creased/Higher than Unity Voltage Transfer Ratio and Improved Robustness against Voltage Supply Disturbances," in Proc. 36th IEEE PESC, Recife, Brazil, June 12-16, 2005, pp. 2383-2389.
[7] L. Gyugyi, B. R. Pelly, "Static Power Freąuency Changers - Theory, Performance, & Application," New York: J. Wiley, 1976.
[8] W. I. Popów, "Der zwangskommutierte Direktumrichter mit si- nusfórmiger Ausgangsspannung," Elektrie 28, no. 4, pp. 194-196, 1974.
[9] K. K. Mohapatra and N. Mohan, "Open-End Winding Induction Motor Driven with Matrix Converter for Common-Mode Elimina-tion," in Proc. PEDES, New Delhi, India, Dec. 12-15, 2006.
[10] M. Braun and K. Hassę, "A Direct Freąuency Changer with Control of Input Reactive Power," in Proc. 3rd IEAC Symp., Lausanne, Switzerland, 1983, pp. 187-194.
[11] D. H. Shin, G. H. Cho, and S. B. Park, "Improved PWM Method of Forced Commutated Cycloconverters," in Proc. IEE, vol. 136, pt. B, no. 3, pp. 121-126, 1989.
[12] P. D. Ziogas, Y. Kang, and V. R. Stefanovic, "Rectifier-Inverter Freąuency Changers with Suppressed DC Link Components," IEEE Trans. Ind. Appi, vol. IA-22, no. 6, pp. 1027-1036, 1986.
[13] S. Kim, S. K. Sul, and T. A. Lipo, "AC/AC Power Conver-sion Based on Matrix Converter Topology with Unidirectional Switches," IEEE Trans. Ind. Appi, vol. 36, no. 1, pp. 139-145, 2000.
[14] K. Gópfrich, C. Rebbereh, and L. Sack, "Fundamental Freąuency Front End Converter (F3E)," in Proc. PCIM, Nuremberg, Ger¬many, May 20-22, 2003, pp. 59-64.
[15] B. Piepenbreier and L. Sack, "Regenerative Drive Converter with Line Freąuency Switched Rectifier and Without DC Link Compo¬nents," in Proc. 35th IEEE PESC, Aachen, Germany, June 20-25, 2004, pp. 3917-3923.
[16] J. Holtz and U. Boelkens, "Direct Freąuency Converter with Sinusoidal Line Currents for Speed-Variable AC Motors," IEEE Trans. Ind. Electron., vol. 36, no. 4, pp. 475-479, 1989.
[17] K. Shinohara, Y. Minari, and T. Irisa, "Analysis and Fundamental Characteristics of Induction Motor Driven by Voltage Source Inverter without DC Link Components (in Japanese)," IEEJ Trans., vol. 109-D, no. 9, pp. 637-644, 1989.
[18] L. Wei and T. A. Lipo, "A Novel Matrix Converter Topology with Simple Commutation," in Proc. 36th IEEE IAS, Chicago, IL, Sept. 30-Oct. 4, 2001, vol. 3, pp. 1749-1754.
[19] J. W. Kolar, M. Baumann, F. Stógerer, F. Schafmeister, and H. Ertl, "Novel Three-Phase AC-DC-AC Sparse Matrix Converter, Part I - Derivation, Basic Principle of Operation, Space Vector Modulation, Dimensioning, Part II - Experimental Analysis of the Very Sparse Matrix Converter," in Proc. 17 th IEEE APEC, Dallas, "\. March 10-14, 2002, vol. 2, pp. 777-791. ~
[20] L. Wei, T. A. Lipo, and H. Chan, "Matrix Converter Topologies -ith Reduced Number of Switches," in Proc. VPEC, Blacksburg, >\. April 14-18, 2002, pp. 125-130.
[21] F. Schafmeister, "Sparse und Indirekte Matrix Konverter," PhD -esis no. 17428, ETH Ziirich, 2007.
[22] W. Kolar, .F. Schafmeister, S. D. Round, and H. Ertl, "Novel Trj-ee-Phase AC-AC Sparse Matrix Converters," Trans. Power Electron., vol. 22, no. 5, pp. 1649-1661, 2007.
[23] M. Y. Lee, P. Wheeler, and C. Klumpner, "A New Modulation Method for the Three-Level-Output-Stage Matrix Coiwerter," in Proc. 4th PCC, Nagoya, Japan, April 2-5, 2007.
[24] Z. Klumpner, M. Lee, and P. Wheeler, "A New Three-Level Sparse 1-direct Matrix Coiwerter" in Proc. IEEE 1ECON, 2006, pp. 1902-
[25] M. Baumann and J. W. Kolar, "Comparative Evaluation of Mod-jtion Methods for a Three Phase / Switch Buck Power Factor I rrector Concerning the Input Capacitor Voltage Ripple," in Proc. :Z:h IEEE PESC, Vancouver, Canada, June 17-21, 2001, voI. 3, :? 1327-1333.
[26] W. Kolar, H. Ertl, and F. C. Zach, "Power Quality Improvement Three-Phase AC-DC Power Conversion by Discontinuous-Mode Dither'-Rectifier Systems," in Proc. 6th Int. {Ind European) Power Quality Conf. (PQ), Munich, Germany, Oct. 14-15, 1992, :?. 62-78.
[27] J. Oyama, T. Higuchi, E. Yamada, T. Koga, and T. A. Lipo, "New ::<ntrol Strategy for Matrix Coiwerter," in Proc. 20th IEEE PESC, Milwaukee, WI, June 26-29, 1989, vol. 1, pp. 360-367.
[28] N. Burany, "Safe Control of Four-Quadrant Switches," in Conf. Rec. 1EEE1AS, San Diego, CA, Oct. 1-5, 1989, pp. 1190-1194.
[29] M. Ziegler and W. Hofmann, "A New Two Steps Commutation Policy for Low Cost Matrix Converter," in Proc. 41 st IEEE PCIM, Nuremberg, Germany, June 6-8, 2000, pp. 445-450.
[30] W. Hofmann and M. Ziegler, "Schaltverhalten und Beanspruchung bidirektionaler Schalter in Matrixumrichtern," ETG/VDE Fach-bericht 88 der Fachtagung Bauelemente der Leistungselektronik, Bad Nauheim, Germany, April 23-24, 2002, pp. 173-182.
[31] M. Venturini, "A New Sine Wave In, Sine Wave Out Corwersion Technique Eliminates Reactive Elements," in Proc. Powercon 7, San Diego, CA, 1980, pp. E3-1-E3-15.
[32] J. W. Kolar and F. C. Zach, "A Novel Three-Phase Utility Interface Minimizing Line Current Harmonics of High-Power Telecommu-nications Rectifier Modules," Trans. Ind. Electron., vol. 44, no. 4, pp. 456-467, 1997.
[33] J. W. Kolar, U. Drofenik, and F. C. Zach, "VIENNA Rectifier II -A Novel Single-Stage High-Frequency Isolated Three-Phase PWM Rectifier System," Trans. Ind. Electron., vol. 46, no. 4, pp. 674 -691, 1999.
[34] K. Mino, Y. Okuma, and K. Kuroki, "Direct-Linked-Type Fre-quency Changer Based on DC-Clamped Bilateral Switching Circuit Topology," Trans. Ind. Electron., vol. 34, no. 6, pp. 1309-1317, 1998.
[35] D. Casadei, G. Serra, G., A. Tani, and P. Nielsen, "Performance of SVM Controlled Matrix Converter with Input and Output Unbalanced Condition." in Proc. 6th European Conf. on Power Electron, and Appi. (EPE), Sevilla, Spain, Sept. 19-21, 1995, vol. 2, pp. 628-633
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPOC-0048-0009