Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Budownictwo i Architektura

Tytuł artykułu

FE modeling of delamination growth in interlaminar fracture specimens

Autorzy Burlayenko, V. N.  Sadowski, T. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Interlaminar fracture specimens like Double Cantilever Beam (DCB), End Notched Flexural (ENF), Single Leg Bending (SLB) etc. are widely used for studying the interlaminar toughness of composite laminates. The aim of this paper is to analysis delamination specimens within the framework of a meso-level damage modeling of composite laminates. In this case interlaminar interface is assumed as a damageable homogeneous layer between adjacent layers of the specimen bulk material. The degradation of the interlaminar connection can be taken into account by means either of an appropriate damage initiation criterion and damage evolution law or using fracture mechanics approach. Onset and growth of the delamination pre-existing crack in the fracture specimens are simulated by using both modeling possibility within commercial finite element code ABAQUSTM. Comparisons between numerical predictions of used different finite element models as well as available experimental data have been performed.
Słowa kluczowe
EN interlaminar fracture specimens   delamination   ABAQUS   finite element predictions  
Wydawca Wydawnictwo Uczelniane Politechniki Lubelskiej
Czasopismo Budownictwo i Architektura
Rocznik 2008
Tom vol. 2, nr 1
Strony 95--109
Opis fizyczny Bibliogr. 24 poz., rys.
autor Burlayenko, V. N.
autor Sadowski, T.
  • Lublin University of Technology, Department of Solid Mechanics; 20-618 Lublin, Nadbystrzycka 40 Str., Poland,
[1] O’Brien T.K., Characterization of delamination onset and growth in a composite laminate, in: Reifsnider K.I. (Ed.), Damage in Composite Materials, ASTM STP 775. Am. Sot. Testing Mater. (1982): 140-167.
[2] Grigolyuk E.I, Kogan A.A. and Mamay V.I., Deformation problems of laminated structures with delaminations, Izv. Ross. Akad. Nauk., MTT 1 (1994): 6-34.
[3] ABAQUS User Manual. Version 6.6, ABAQUS Inc., Pawtucket, Rhode Island, USA, 2005.
[4] Whitney J.M., Experimental characterization of delamination fracture, in: N.J. Pagano (Ed.), Interlaminar Response of Composite Materials, Composite Materials Series 5 (1989): 111-239.
[5] Li J., Lee S.M., Lee E.W. and O’Brien T.K., Evaluation of the edge crack torsion ECT test for Mode III interlaminar fracture toughness of laminated composites, J. Compos. Technol. Res. 19 (1997): 174-183.
[6] Irwin G.R., Analysis of stresses and strains near the end of a crack transversing a plate, J. Appl. Mech. 24 (1957): 361-366.
[7] Rybicki E.F., Kanninen M.F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng. Fracture Mech. 9 (1977): 931-938.
[8] Raju, I.S., Calculation of strain-energy release rates with higher order and singular finite elements, Eng. Fracture Mech. 38 (3) (1987): 251-274.
[9] Zou Z., Reid S.R., Li S., Soden, P.D., Mode separation of energy release rate for delamination in composite laminates using sublaminates, Int. J. Solids Struct. 38 (2001): 2597-2613.
[10] Krueger R., The virtual crack closure technique: history, approach and applications, Applied Mechanical Review ASME 57(2) (2004): 109-142.
[11] Rice J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35 (1968): 379-386.
[12] Hellen T.K., On the method of the virtual crack extension, Int. J. Numer. Methods Eng. 9 (1975): 187-207.
[13] Parks D.M., A stiffness derivative finite element technique for determination of crack tip stress intensity factors, Int. J. Fract. 10 (4) (1974): 487-502.
[14] Allix O., Ladeveze P., Corigliano A., Damage analysis of interlaminar fracture specimens, Compos. Struct. 31 (1995): 66-74.
[15] Allix O., Corigliano A., Modelling and simulation of crack propagation in mixed-modes interlaminar fracture specimens, Int. J. Fract. 77 (1996): 111-140.
[16] Schellekens J.C.J., de Borst R., A nonlinear finite-element approach for the analysis of mode-I free edge delamination in composites, Int. J. Solids Struct. 30(9) (1993):1239-53.
[17] Benzeggagh M.L., Kenane M., Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus, Compos. Science and Technol. 56 (1996): 439-449.
[18] Mi U., Crisfield M.A., Davies G.A.O., Progressive delamination using interface elements, J. Compos. Mater. 32 (1998): 1246-1272.
[19] Chen J., Crisfield M.A., Kinloch A.J., Busso E.P., Matthews F.L., Qiu Y., Predicting progressive delamination of composite material specimens via interface elements, Mech. Compos. Mater. Struct. 6 (1999): 301-317.
[20] Alfano G., Crisfield M.A., Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Methods Engng. 77(2) (2001): 111-170.
[21] Camanho P.P., Da´vila C.G., de Moura M.F., Numerical simulation of mixed-mode progressive delamination in composite materials, J. Compos. Mater. 37(16) (2003): 1415-1438.
[22] Goyal-Singhal V., Johnson E.R., Da´vila C.G., Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities, Compos. Struct. 64 (2004): 91-105.
[23] Mabson G., Fracture Interface Elements, 46th PMC General Session of Mil-17 (Composites Materials Handbook) Organization, Charleston, SC, 2003.
[24] Robinson P., Besant T., Hitchings D., Delamination Growth Prediction Using a Finite Element Approach, 2nd ESIS TC4 Conference on Polymers and Composites, Les Diablerets, Switzerland, 1999.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPL6-0014-0065