Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BPK6-0014-0051

Czasopismo

Chemical and Process Engineering

Tytuł artykułu

Estimation of reburning potential of syngas from sewage sludge gasification process

Autorzy Werle, S. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The motivation of this work was to define the reburning potential of sewage sludge gasification gas (syngas). Numerical simulation of co-combustion process of syngas in hard coal-fired boiler has been done. All the calculations were performed using the Chemkin program. Plug-Flow Reactor model was used. The calculations were modelled using GRI-Mech 2.11 mechanism. The highest NO conversions are obtained at the temperature of about 1000-1200 K. The highest reduction efficiency was achieved for the molar flow ratio of syngas equal to 15%. The combustion of hard coal with sewage sludge - derived syngas reduces NO emissions and the amount of coal needed to produce electricity and heat. Advanced reburning, which is a more complicated process gives efficiency of up to 80%. The Calculations show that the analyzed syngas can yield better results.
Słowa kluczowe
PL osad ściekowy   zgazowanie  
EN sewage sludge   plug flow reactor  
Wydawca Komitet Inżynierii Chemicznej i Procesowej Polskiej Akademii Nauk
Czasopismo Chemical and Process Engineering
Rocznik 2011
Tom Vol. 32, nr 4
Strony 411--421
Opis fizyczny Bibliogr. 29 poz., tab., wykr.
Twórcy
autor Werle, S.
  • The Silesian University of Technology, Institute of Thermal Technology, ul. Konarskiego 22, 44-100 Gliwice, Poland
Bibliografia
1. Adams B.R., Harding N.S., 1998. Reburning using biomass for NOx control. Fuel Process. Technol., 54, 249-263. DOI: 10.1016/S0378-3820(97)00072-6.
2. Bilbao R., Alzueta M.U., Millera A., Cantin V., 1995. Experimental study and modeling of the burnout zone in the natural gas reburning process. Chem. Eng. Sci., 50, 2579-2587. DOI: 10.1016/0009-2509(95)00119-P.
3. Cariln N.T., Annamalai K., Harman W.L., Sweeten J.M., 2009. The economics of reburning with cattle manure-based biomass in existing coal-fired power plants for NOx and C02 emissions control. Biomass Bioenerg., 33, 1139-1157. DOI: 10.1016/j.biombioe.2009.04.007.
4. Dagaut P., Lecomte F., Chevallier S., Cathonnet M., 1998. Experimental and detailed kinetic modeling of nitric oxide reduction by a natural gas blend in simulated reburning conditions. Combust. Sci. and Technol., 139, 329-363. DOI: 10.1080/00102209808952093.
5. D^browski J., Piecuch T., 2011. Mathematical description of combustion process of selected groups of waste. Rocznik Ochr. Srod., 13, 253-268.
6. Folsom B.A., Sommer T.M., Payne R., 1991. Demonstration of combined NOx and S02 emission control technologies involving gas reburning. AFRE-JFRC International Conference on Environmental Control of Combustion Processes, Honolulu.
7. Folsom B.A., 1997. Advanced gas reburning demonstration and commercial gas reburning system upgrade. Fuel Energy Abstracts, 4, 227. DOI: 10.1016/S0140-6701 (97)84634-6.
8. Frassoldati A., Faravelli T., Ranzi E., 2007. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int. J Hydrogen Energy, 32, 3471-3485. DOI: 10.1016/j.ijhydene.2007.01.011.
9. Galborg P., Alzueta M.U., Dam-Johansen K., Miller J.A., 1998. Kinetic modeling of hydrocarbon/nitric oxides interactions in a flow reactor. Combust. Flame, 115, 1-27. DOI: 10.1016/S0010-2180(97)00359-3.
10. Glarborg P., Lilleheie N.I., Byggstoyl S., Magnussen F., Klipinen P., Hupa M., 1992. A reduced mechanism for nitrogen chemistry in methane combustion. Proc. Combustion Inst., 24, 889-895.
11. Hardy T., 2003. Efficiency of NOx reduction from pulverized boilers using reburning. Archiwum Spalania, 2-4, 33-49 (In Polish).
12. Hewson J.C., Bollig M., 1992. Reduced mechanism for NOx emissions from hydrocarbon diffusion flames. Proc. Combustion Inst., 24, 2171-2179.
13. Klipinen P., Galborg P.P., Hupa M., 1992. Reburning chemistry: a kinetic modeling study. Ind. Eng. Chem. Res., 31, 1478-1490. DOI: 10.1021/ie00006a009.
14. Lanigan E.P., Golland E.S., Rhine J.M., 1991. The demonstration of gas reburning at Longannet: leading the world in low-NOx technology. International Gas Reburn Technology Workshop, Sweden, 121-138.
15. Maly P.M., Zamansky V.M., Ho L., Payne R., 1999. Alternative fuel reburning. Fuel, 78, 327-334. DOI: 10.1016/S0016-2361 (98)00161 -6.
16. Miller J.A., Bowman C.T., 1989. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci., 15, 287-338. DOI: 10.1016/0360-1285(89)90017-8.
17. Norman F., Andersson K., Leckner B., Johnsson F., 2009. Emission control of nitrogen in the oxy-fuel process. Prog. Energy Combust. Sci., 35, 385-397. DOI: 10.1016/j.pecs.2009.04.002.
18. Piecuch T., Dabrowski J., Dabrowski T., 2009. A laboratory investigations on possibility of thermal utilization of post-production Waste polyester. Rocznik Ochr. Srod., 11, 87-101.
19. Shen B., Yao Q., Xu X., 2004. Kinetic model for natural gas reburning. Fuel Process. Technol, 85, 1301-1315. DOI: 10.1016/j.fuproc.2003.09.005.
20. Smith G.P., Golden D.P., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., Bowman C.T., Hanson R.K., Song S., Gardiner W.C., Lissianski Jr. V.V., Qin Z., Gri-Mech 2.11, www.me.berkeley.edu/gri_mech/
21. Smoot L.D., 1998. International research centers' activities in coal combustion. Prog. Energy Combust. Sci, 24, 409-501. DOI: 10.1016/S0360-1285(97)00032-4.
22. Smoot L.D., Hill S.C., Xu H., 1998. NOx control through reburning. Prog. Energy Combust. Sci., 24, 385-408. DOI: 10.1016/S0360-1285(97)00022-1.
23. Szkarowski A., 2001. Technology of NOx emission reduction using method of flame dosed direction ballasting. Rocznik Ochr. Srod., 3, 54-73.
24. Szkarowski A. 2002. Principles of calculation at suppression of NOx formation by a method of the dosed directed injection of a water ballast. Rocznik Ochr. Srod., 4, 366-378.
25. Takahashi Y., Sakai M., Kunimoto T., Ohme S., Haneda H., Kawamura T., Kaneko S., 1983. Proc. the 1982 Joint Symposium on Stationary NOx Control, EPRI Report No. CS-3182.
26. Wendt J.O.L., Sternling C.V., Matovich M.A., 1972. Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection, Fourteenth Symposium on Combustion, 881, The Combustion Institute, Pittsburgh, PA.
27. Werle S., 2012. A reburnig process using sewage sludge-derived syngas. Chem. Pap., 2, 99-107. DOI: 10.2478/sl 1696-011-0098-y.
28. Werle S., 2011. Modeling of the reburnig process using sewage sludge-derived syngas. Waste Manage. DOI: 10.1016/j.wasman.2011.10.013.
29. Werle S., Wilk R.K, 2010. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renew. Energy, 35, 1914-1919. DOI: 10.1016/j.renene.2010.01.019.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPK6-0014-0051
Identyfikatory