Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BPK6-0014-0047

Czasopismo

Chemical and Process Engineering

Tytuł artykułu

Modelling of NO adsorption in fixed bed on activated carbon

Autorzy Kubonova, L.  Obalova, L.  Vlach, O.  Troppova, I.  Kalousek, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Adsorption experiments of nitric oxide in nitrogen carrier gas were held on activated carbon in a fixed bed flow system. Breakthrough curves describing the dependence of exit concentrations of nitric oxide on time were matched with theoretical response curves calculated from the linear driving force model (LDF). The model assumes Langmuir adsorption isotherm for the description of non-linear equilibrium and overall mass transfer coefficient for mass transfer mechanism. Overall mass transfer coefficients were obtained by the method of least squares for fitting numerically modelled breakthrough curves with experimental breakthrough curves. It was found that LDF model fits all the breakthrough curves and it is a useful tool for modelling purposes.
Słowa kluczowe
PL adsorpcja   współczynnik przenikania  
EN adsorption   activated carbon   nitric oxide   linear driving force model   mass transfer coefficient  
Wydawca Komitet Inżynierii Chemicznej i Procesowej Polskiej Akademii Nauk
Czasopismo Chemical and Process Engineering
Rocznik 2011
Tom Vol. 32, nr 4
Strony 367--377
Opis fizyczny Bibliogr. 22 poz., wykr., tab.
Twórcy
autor Kubonova, L.
autor Obalova, L.
autor Vlach, O.
autor Troppova, I.
autor Kalousek, J.
  • VSB-Technical University of Ostrava, Centre for Environmental Technology, 17. listopadu 15/2172, 708 33, Ostrava, Czech Republic
Bibliografia
1. Amanullah Md., Farooq S., Viswanathan S., 1999. Modeling and simulation of biofilter. Ind. Eng. Chem. Res., 38, 2765 - 2774. DOI: 10.1021/ie9807708.
2. Amanullah Md., Viswanathan S., Farooq S., 2000. Equilibrium Kinetics, and Column Dynamics of Methyl Ethyl Ketone Biodegradation. Ind. Eng. Chem. Res., 39, 3387-3396. DOI: 10.1021/ie000265m.
3. Babu B.V., Gupta S., 2005. Modeling and simulation of fixed bed adsorption column: effect of velocity variation.
4. Retrieved 2005, from http://discovery.bits-pilani.ac.in/~bvbabu/JET_Ads_imanager_2005.pdf. Bird R.B., Stewart W.E., Lightfoot E.N., 1960. Transport Phenomena. Wiley: New York, 532 - 533.
5. Dantas T.L.P., Luna F.M.T., Silva Jr.I.J., Azevedo D.C.S., Grande C.A., Rodrigues A.E., Moreira R.F.P.M., 2011. Carbon dioxide-nitrogen separation through adsorption on activated caron in a fixed bed. Chem. Eng. J., 169, 11-19. DOI: 10.1016/j.cej.2010.08.026.
6. Foumeny E.A., Benyahia F., 1991. Predicive characterization of mean voidage in packed beds. Heat Recovery Syst. CHP, 11 (2/3), 127-130.
7. Gomez-Garcia M.A., Pitchon V., Kiennemann A., 2005. Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials. Environ. Int., 31, 445-467. DOI: 10.1016/j.envint.2004.09.006.
8. Gupta A., Gaur V., Verma N., 2002. Breakthrough analysis for adsorption of sutur-dioxide over zeolites. Chem. Eng. Process., 43, 9-22. DOI: 10.1016/S0255-2701(02)00213-1.
9. Hercik M., 2004. Environmental protection and legislation. Vysoka skola podnikanf, a.s., Ostrava (in Czech).
10. Holdich R.G., 2002. Fundamentals of Particle Technology. Loughborough, U.K.
11. Levenspiel O., 1979. The Chemical Reactor Omnibook. Oregon State University, 64.2 - 64.11.
12. Murillo R., Garcia T., Aylon E., Callen M.S., Navarro M.V., Lopez J.M., Mastral A.M., 2004. Adsorption of phenanthrene on activated carbons: Breakthrough curve modelling. Carbon, 42, 2009-2017. DOI: 10.1016/j.carbon.2004.04.001.
13. Mutlu M., Gokmen V., 1998. Determination of effective mass transfer coefficient (AT,) of Patulin adsorption on activated carbon packed bed columns with recycling. J. Food Eng., 35, 259-266. DOI: 10.1016/S0260-8774(98)00914-5.
14. Ruthven D.M., 1984. Principles of adsorption and adsorption processes. John Wiley & Sons, New York, 206 -244.
15. Sircar S., Hufton J.R., 2000. Why does the linear driving force model for adsorption kinetics work? Adsorption, 6, 137 - 147. DOI: 10.1023/A:1008965317983.
16. Sramek M., Ditl P., Neumanova E., 2005. Modelling and simulation of adsorption in fixed bed. Conference ChemPor 2005. Coimbra, Portugal.
17. Sumathi S., Bhatia S., Lee K.T., Mohamed A.R., 2010. Adsorption isotherm models and properties of S02 and NO removal by palm shell activated carbon supported with cerium (Ce/PSAC). Chem. Eng. J., 162, 194-200. DOI: 10.1016/j.cej.2010.05.028.
18. Tang D., Jess A., Ren X., Bluemich B., Stapf S., 2004. Axial dispersion and wall effects in narrow fixed bed reactors: A comparative study based on RTD and NMR measurements. Chem. Eng. Technol., 27 (8), 866-873. DOI: 10.1002/ceat.200402076.
19. Tantet J., Eric M., Desai R., 1995. Breakthrough study of adsorption and separation of sulfur dioxide from wet gas using hydrophobic zeolites. Gas. Sep. Purif, 9 (3), 213-220. DOI: 10.1016/0950-4214(95)98229-E.
20. Thomas W. J., Crittenden B., 1998. Adsorption technology and design, Butterworth-Heinemann.
21. Zhang W.J., Rabiei S., Bagreev A., Zhuang M.S., Rasouli F., 2008. Study of NO adsorption on activated carbons. Appl. Catal. B, 83, 63-71. DOI: 10.1016/j.apcatb.2008.02.003.
22. Zhu J.L., Wang Y.H., Zhang J.C., Ma R.Y., 2005. Experimental investigation of adsorption of NO and S02 on modified activated carbon sorbent from flue gases. Energy Convers. Manage., 46, 2173-2184. DOI: 10.1016/j.enconman.2004.10.011.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPK6-0014-0047
Identyfikatory