Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button


Chemical and Process Engineering

Tytuł artykułu

The effect of pressure on heat transfer during pool boiling of water-A1[2]0[3] and water-Cu nanofluids on stainless steel smooth tube

Autorzy Cieślinski, J.T.  Kaczmarczyk, T.Z. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e. water-Al203 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed the test heater. The experiments have been performed to establish the influence of nanofluids concentration on heat transfer characteristics during boiling at different absolute operating pressure values, i.e. 200 kPa, ca. 100 kPa (atmospheric pressure) and 10 kPa. It was established that independent of nanoparticle materials (A1203 and Cu) and their concentration, an increase of operating pressure enhances heat transfer. Generally, independent of operating pressure, sub- and atmospheric pressure, and overpressure, an increase of nanoparticle concentration caused heat transfer augmentation.
Słowa kluczowe
PL nanofluid   ciśnienie robocze  
EN pool boiling   nanofluid   operating pressure  
Wydawca Komitet Inżynierii Chemicznej i Procesowej Polskiej Akademii Nauk
Czasopismo Chemical and Process Engineering
Rocznik 2011
Tom Vol. 32, nr 4
Strony 321--332
Opis fizyczny Bibliogr. 36 poz., rys., wykr.
autor Cieślinski, J.T.
autor Kaczmarczyk, T.Z.
1. Ahmed O., Hamed M.S., 2010. The effect of experimental techniques on the pool boiling of nanofluids. Proc. 7lh Int. Conf. on Multiphase Flow, ICMF 2010, Tampa, FL USA, May 30-June 4.
2. Bang I. C, Chang S. H., 2005. Boiling heat transfer performance and phenomena of A1203 - water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transf., 48, 2407-2419. DOI: 10.1016/j.ijheatmasstransfer.2004.12.047.
3. Benjamin R.J., Balakrishnan A.R., 1997. Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties. Exp. Thermal Fluid Sci., 15, 32-42. DOI: 10.1016/S0894-1777(96)00168-9.
4. Bergles A.E., 1985. Techniques to augment heat transfer. Handbook of heat transfer applications. New York, McGraw-Hill, 3-1-80.
5. Bi S., Guo K., Liu Z., Wu J., 2011. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Conversion and Management, 52, 733-737. DOI: 10.1016/j.enconman.2010.07.052.
6. Choi S., 1995. Enhancing thermal conductivity of fluids with nanoparticles, In: Siginer D.A., Wang H.P. (Eds.), Developments and Applications of Non-Newtonian Flows, ASME, FED-Vol. 231/MD-Vol. 66, 99-105.
7. Cieslinski J.T., Krasowski K., Kaczmarczyk T., 2007. Simulation of temperature field in cylindrical boiling heating section. Turbulence: Int. J., 12, 59 - 64.
8. Cieslinski J.T., Kaczmarczyk T.Z., 2011. Pool boiling of water-Al203 and water-Cu nanofluids on horizontal smooth tubes. Nanoscale Research Letters, 6, 220. DOL10.1186/1556-276X-6-220.
9. Cieslinski J.T., Rubalewski J., 2012. Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance. International Symposium on Multiphase Flow and Transport Phenomena. April 22-25, 2012, Agadir, Morocco.
10. Coursey J. S., Kim J., 2008. Nanofluid boiling: The effect of surface wettability, Int. J. Heat Fluid Flow, 29, 1577-1585. DOI: 10.1016/j.ijheatfluidflow.2008.07.004.
11. Das S. K., Putra N., Roetzel W., 2003. Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf, 46, 851-862. DOI: 10.1016/S0017-9310(02)00348-4.
12. Das S.K., Narayan G.P., Baby A.K., 2008. Survey on nucleate pool boiling of nanofluids: the effect of particle size relative to roughness. J. Nanopart. Res., 10, 1099-108. DOI: 10.1007/sl 1051-007-9348-x.
13. Hadad K., Hajizadeh A., Jafarpour K., Ganapol B.D., 2010. Neutronic study of nanofluids application to VVER-1000. Annals of Nuclear Energy, 37, 1447-1455. DOI: 10.1016/j.anucene.2010.06.020.
14. Judd R.L., Hwang K.S., 1976. A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. ASME J. Heat Transf, 98, 623-629.
15. Kang S.W, Wei W.C., Tsai S.H., Shih-Yu Yang S.Y., 2006. Experimental investigation of silver nano-fluid on heat pipe thermal performance. Appl. Thermal Eng., 26, 2377-2382. DOI: 10.1016/j.applthermaleng.2006.02.020.
16. Kashinath M. R., 2006. Parameters affecting critical heat flux of nanofluids: heater size, pressure, orientation and anti-freeze addition, MSc Thesis, The University of Texas at Arlington.
17. Kathiravan R., Kumar R., Gupta A., Chandra R., 2010. Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater. Int. J. Heat Mass Transf, 53, 1673-1681. DOI: 10.1016/j .ijheatmasstransfer.2010.01.022.
18. Kim S.J., Bang I.C., Buongiorno J., Hu L.W., 2007. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transfer, 50, 4105-4116. DOI: 10.1016/j.ijheatmasstransfer.2007.02.002.
19. Kim S.J., McKrella T., Buongiorno J., Hu L.W., 2010. Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. Nuclear Eng.Des., 240, 1186-1194. DOI: 10.1016/j .nucengdes.2010.01.020.
20. Kleinstreuer C, 2011. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review, Nanoscale Res. Lett., 6, 229. DOI: 10.1186/1556-276X-6-229.
21. Kwark S.M., Kumar R., Moreno G., Yoo J., You S. M., 2010. Pool boiling characteristics of low concentration nanofluids, Int. J. Heat Mass Transfer, 53, 972-981. DOI: 10.1016/j.ijheatmasstransfer.2009.11.018.
22. Leong K.Y., Saidur R., Kazi S.N., Mamun A.H., 2010. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Applied Thermal Engineering, 30, 2685-2692. DOI: 10.1016/j.applthermaleng.2010.07.019.
23. Li C.H., Wang B.X., Peng X. F., 2003. Experimental investigations on boiling of nano-particle suspensions. 5th Int. Conf. Boiling Heat Transfer. Montego Bay, Jamaica, 4-8 July 2003.
24. Liu Z. -H., Yang X. -F., Xiong J. -G., 2010. Boiling characteristics of carbon nanotube suspensions under sub-atmospheric pressures. Int. J. Thermal Sci., 49, 1156-1164. DOI: 10.1016/j.ijthermalsci.2010.01.023.
25. Liu Z., Liao L., 2008. Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int. J. Heat Mass Transf, 51, 2593-2602. DOI: 10.1016/j.ijheatmasstransfer.2006.11.050
26. Liu Z., Xiong J., Bao R., 2007. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int. J. Multiphase Flow, 33, 1284-1295. DOI: 10.1016/j.ijmultiphaseflow.2007.06.009.
27. Lotfi H., Shafii M.B., 2009. Boiling heat transfer on a high temperature silver sphere in nanofluid. Int. J. Thermal Sci., 48, 2215-220. DOI: 10.1016/j.ijthermalsci.2009.04.009.
28. Marto P. J., Anderson C. L., 1992. Nucleate boiling characteristics of R-l 13 in small tube bundle. Transactions ASME J. Heat Transf, 114, 425-433.
29. Narayan G. P., Anoop K. B., Sateesh G., Das S. K., 2008. Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions. Int. J. Multiphase Flow, 34, 145-160. DOI: 10.1016/j.ijmultiphaseflow.2007.08.004.
30. Shi M. H., Shuai M. Q., Lai Y. E., Li Y. Q., Xuan M., 2006. Experimental study of pool boiling heat transfer for nanoparticle suspensions on a plate surface. 13th Int. Heat Transfer Conference, Sydney, Australia, 13-18 August, paper BOI-06.
31. Trisaksri V., Wongwises S., 2009. Nucleate pool boiling heat transfer of Ti02-R141b nanofluids. Int. J. Heat Mass Transf, 52, 1582-1588. DOI: 10.1016/j.ijheatmasstransfer.2008.07.041.
32. Vassallo P., Kumar R., Amico S., 2004. Pool boiling heat transfer experiments in silica-water nano-fluids. Int. J. Heat Mass Transf., 47, 407-411. DOI: 10.1016/S0017-9310(03)00361 -2.
33. Wang C.H., Dhir V.K., 1993. Effect of surface wettability on active nucleation site density during pool boiling of saturated water. ASME. J. Heat Transf, 115, 659-669.
34. Wen D., Ding Y., 2005. Experimental investigation into the boiling heat transfer of aqueous based y-alumina nanofluids. J. Nanopart. Res., 1, 265-274. DOI: 10.1007/sl 1051-005-3478-9.
35. Yang X.F., Liu Z.H., 2011. Application of functionalized nanofluid in thermosyphon. Nanoscale Res. Lett., 6, 494. DOI: 10.1186/1556-276X-6-494.
36. You S. M., Kim J. H., Kim K. H., 2003. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Physics Lett., 83, 3374-3376. DOI: 10.1063/1.1619206.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPK6-0014-0043