Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Journal of Polish CIMAC

Tytuł artykułu

Mixture of distributions as a lifetime distribution of a bus engine

Autorzy Knopik, L. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN We show that a upside-down bathtub failure rate function can be obtained from a mixture of two increasing failure rate function (IFR) models. Specifically, we study the failure rate of the mixture an exponential distribution, and an IFR distribution with strictly increasing failure rate function. Examples of several other upside-down bathtub shaped failure rate functions are also presented. The method are illustrated by a numerical example of the time between the failures for the bus engines.
Słowa kluczowe
EN bathtub curve   upside-down bathtub curve   failure rate function   mixture of distributions   reliability function  
Wydawca Faculty of Ocean Engineering and Ship Technology, Gdańsk University of Technology
Czasopismo Journal of Polish CIMAC
Rocznik 2011
Tom Vol. 6, no 2
Strony 121--126
Opis fizyczny Bibliogr. 14 poz., rys., tab.
autor Knopik, L.
  • University of Technology and Life Science Department of Applied Mathematics Prof. Kaliski Av. 7, 85-789 Bydgoszcz, Poland,
[1] Block HW, Savits TH. Burn–in. Statistical Science 1997; 12:1–13.
[2] Block HW, Joe H. Tail behavior of the failure rate function of mixtures. Lifetime Data Analysis 1997; 3:269–288.
[3] Block HW, Savits T H, Wondmagegnehu ET. Mixtures of distributions with increasing linear failure rates. Journal Application Probability 2003; 40:85–504.
[4] Chang DS. Optimal burn – in decision for products with an unimodal failure rate function. European Journal Operations Research 2000; 126:584–640.
[5] Gupta GL, Gupta RC. Aging characteristics of the Weibull mixtures. Probability in the Engineering and Information Science 1996; 10:591–600.
[6] Gurvich MP, Dibenedetto AT, Range SV. A new statistical distribution for characterizing the random strength of brittle materials. Journal of Material Science 1997;32:2559– 2564.
[7] Jiang R, Ji P, Xiao X. Aging property of unimodal failure rate models. Reliability Engineering System Safety 2003; 79:113–116.
[8] Klutke GA, Kiessler PC, Wortman MA. A critical look at the bathtub curve. IEEE Transactions on Reliability 2003; 52:125–129.
[9] Mudholkar GS, Srivastava DK, Feimer M. The exponentiated Weibull family: a reanalysis of the bus – motor failure data. Technometrics 1995:37; 436–445.
[10] Nadarajah S, Kotz S. On Some Recent Modifications of Weibull Distribution. IEEE Transactions on Reliability 2005; 54:560–561.
[11] Proschan F. Theoretical explanation of observed decreasing failure rate. Technometrics 1963; 5:375–383.
[12] Rajarshi S, Rajarshi MB. Bathtub distributions: A review. Communications Statistics, Theory and Methods1988; 17:2597 –2621.
[13] Wondmagegnehu ET, Navarro J, Hernandez PJ. Bathtub shaped failure rates from mixtures: A practical point of view. IEEE Transactions on Reliability 2005; 54:270–275.
[14] Wondmagegnehu ET, On the behavior and shape of mixture failure rates a family of IFR Weibull distributions, Naval Research Logistics 2004;51:491-500.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPG8-0056-0014