PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-dimensional vertical analysis of dam-break flow

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns mathematical modeling of free surface open-channel water flow. Two-dimensional vertical Reynolds-averaged Navier-Stokes equations were used to simulate the flow. They were solved with the SIMPLE algorithm of the finite difference method using the Marker and Cell technique to trace free surface movement. The dam-break flow (water column collapse) problem on a horizontal and frictionless bottom was investigated as a test case. The mechanics of dam-break flow for wet and dry bed conditions was analyzed on the basis of numerical simulations. The obtained results are shown for varying head of water in the downstream channel. The possibility of using the shallow-water equations and the RANS model to simulate rapidly varied flows is discussed.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-952 Gdansk, Poland, pzim@pg.gda.pl
Bibliografia
  • [1] Valiani A, Caleffi V and Zanni A 2002 J. Hydraulic Eng. 128 (5) 460
  • [2] Szydłowski M 2005 Archives of Hydro-Engineering and Environmental Mechanics, Gdansk, 52 (4) 321
  • [3] Sawicki J 1998 Free Surface Flows, PWN, Warsaw (in Polish)
  • [4] Fletcher C A J 1991 Computational Techniques for Fluid Dynamics: 1. Fundamental and General Techniques, Springer- Verlag, Berlin
  • [5] Anderson J D 1995 Computational Fluid Dynamics, McGraw-Hill Inc, New York
  • [6] Tannehill J C and Anderson D A 1984 Computational Fluid Mechanics and Heat Transfer, Series in Computational and Physical Processes in Mechanics and Thermal Sciences, McGraw Hill Book Company, New York
  • [7] Patankar S V 1980 Numerical Heat Transfer and Fluid Flow, McGraw-Hill Inc., New York
  • [8] Ferziger J Hand Peric M 2002 Computational Methods for Fluid Dynamics, Springer
  • [9] Harlow F H and Welch J E 1965 Physics of Fluids 8 (12) 2182
  • [10] Maronnier V, Picasso M and Rappaz J 1999 J. Comput. Phys. 155 439
  • [11] Mohapatra P K, Eswaran V and Bhallamudi S M 1999 J. Hydraulic Engng 25 (2) 183
  • [12] Zwart P J, Raithby G D and Raw M J 1999 1. Comput. Phys. 154497
  • [13] LeVeque R J 2002 Finite Volume Method for Hyperbolic Problems, Cambridge University Press, New York
  • [14] Zima P 2005 Proc. Water Management and Hydraulic Engineering, 9th Int. Symposium (Nachtnebel H P and Jugovic C J, Eds), Vienna, BOKU, Univ. Natural Res. Appl. Sci., pp. 455-462
  • [15] Szydłowski M and Zima P 2006 Archives of Hydro-Engineering and Environmental Mechanics, Gdansk, 53 (4) 295
  • [16] Koshizuka S, Tamako Hand aka Y 1995 Comput. Fluid Dyn. J. 4 (1) 29
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0030-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.