Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Advances in Materials Science

Tytuł artykułu

FEM approach to estimate the behaviour of biocomposite metal-surface coating systems

Autorzy Sobieszczyk, S.  Wojnicz, W.  Nowak, B. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN A three dimensional (3D) model of biocomposite metal-surface coating system, which is influenced by known external forces, is proposed. This model consists of the metallic substrate (Ti6AI4V) and the hydroxyapatite (HA) coating. Using FEM (finite element method), strain-stress maps of model were generated for investigating rela-tions between the extreme stress of HA coating and the magnitude of external force and the thickness of the coat-ing. The analysis of numerical simulations results confirms that the system with the greatest coating thickness (i.e. 10-3 m) has the least extreme stress in this surface coating.
Słowa kluczowe
EN biocomposite   FEM analysis   simulation   hydroxyapatite  
Wydawca Politechnika Gdańska
Czasopismo Advances in Materials Science
Rocznik 2008
Tom Vol. 8, nr 1(15)
Strony 153--158
Opis fizyczny Bibliogr. 13 poz., rys.
autor Sobieszczyk, S.
autor Wojnicz, W.
autor Nowak, B.
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Mechanical Engineering and Strength of Materials, Gdansk, Poland
1. Liu X., Po on R. W.Y., Kwok S.C.H., Chu P.K., Ding Ch.: Plasma surface modification of titanium for hard tissue replacements. Surface & Coatings Techn. 186 (2004) 227-233.
2. Windier M., Klabunde R.: Titanium for hip and knee prostheses. [In] Titanium in Medicine, D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen [eds.], Springer-Verlag, Berlin Heildelberg, 2001, pp. 703-746.
3. Garcia C., Cere S., Duran A.: Bioactive coatings deposited on titanium alloys. Journal of Non-Crystalline Solids 352 (2006) 3488-3495.
4. Andrade M.C., Filgueiras M.R.T., Ogasawara T.: Hydrothermal nucleation of hydroxyapatite on titanium surface. Journal of the European Ceramic Society 22 (2002) 505-510.
5. Yang B., Uchida M., Kim H.-M., Zhang X., Kokubo T.: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25 (2004), 1003-1010.
6. Zheng X., Huang M., Ding Ch.: Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 21 (2000) 841-849.
7. Yang Y-CH.: Influence of residual stress on bonding strength of the plasma-sprayed hydroxyapatite coating after the vacuum heat treatment. Biomaterials 201 (2007) 7187-7193.
8. Zhang S., Wang Y.S., Zeng X.T., Cheng K., Qian M., Sun D.E., Wenig W.J., Chia W.Y.: Evaluation of interfacial shear strength and residual stress of sol-gel derived fluoridated hydroxyapatite coatings on Ti-6Al-4V substrates. Engineering Fracture Mechanics 74 (2007) 1884-1893.
9. Lynn A.K., DuQuesnay D.L.: Hydroxyapatite-coated Ti-6Al-4V. Part I: the effect of coating thickness on mechanical fatigue behaviour. Biomaterials 23 (2002) 1937-1946.
10. Teraoka K., Ito A., Maekawa K., Onuma K., Tateishi T., Tsutsumi S.: Mechanical properties of hydroxyapatite and OH-carbonated hydroxyapatite single crystals. Journal of Dental Research 77 (1998) 1560-1568.
11. Zhang Ch., Leng Y., Chen J.: Elastic and plastic behaviour of plasma-sprayed hydroxyapatite coatings on a Ti-6Al-4V substrate. Biomaterials 22 (2001) 1357-1363.
12. Yong Han, Junma Nan, Kewei Xu: Residual stresses in plasma-sprayed hydroxyapatite coatings, Journal of Materials Science Letters 18 (1999) 1087-1089.
13. Fogarassy P., Cofino B., Millet P., Lodini A.: Residual stress in hydroxyapatite coating - nonlinear analysis an high-energy synchrotron measurements. IEEE translations on biomedical engineering, vol. 52, No 7 (2005) 1161-1166.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPG5-0030-0031