Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wettability and interface considerations in advanced heat-resistant Ni-base composites

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Oxide fiber-reinforced Ni-base composites have long been considered as attractive heat-resistant materials. After several decades of active research, however, interest in these materials began to decline around mid-1990's due chiefly to 1) a lack of manufacturing technology to grow inexpensive single-crystal oxide fibers to be used in structural composites, and 2) fiber strength loss during processing due to chemical interactions with reactive solutes in the matrix. The cost disadvantage has been mitigated to a large extent by the development of innovative fiber fabrication processes such as the Internal Crystallization Method (ICM) that produces monocrystalline oxide fibers in a cost-effective manner. Fiber strength loss has been an equally restrictive issue but recent work has shown that it may be possible to design creep-resistant composites even when fiber surface reconstruction from chemical interactions has degraded the strength of extracted fibers tested outside the matrix. The key issue is the optimization of the composite- and interface structure. Reaction-formed defects may be healed by the matrix (or a suitable coating material) so that the fiber residing in the matrix may exhibit diminished sensitivity to flaws as compared to fibers extracted from the matrix and tested in isolation of the matrix. Generally, the Ni-base/Al2O3 composites exhibit acceptable levels of wettability and interface strength (further improved with the aid of reactive solutes), which are required for elevated-temperature creep-resistance. In order to harness the full potential of these composites, the quality of the interface as manifested in the fiber/matrix wettability, interface composition, interphase morphology, and interface strength must be designed. We identify key issues related to the measurement of contact angle, interface strength, and chemical and structural properties at the fiber/matrix interface in the Nilalumina composites, and present the current state-of the-art in understanding and designing the Nilalumina interface. There should be no doubt that optimization of the interface- and composite microstructure through judicious control of the fabrication process and surface modification shall yield technologically promising Ni-base/oxide fiber composites.
Opis fizyczny
Bibliogr. 75 poz., 12 rys., 2 tab.
  • Engineering and Technology Department, 326 Fryklund Hall, University of Wisconsin-Stout, Menomonie, WI 54751, U.S.A.,
  • [1] A. Kelly, Strong Solids, Oxford, Clarendon Press, 1973.
  • [2] H.E. LaBelle, Jr. and A.I. Mlavsky, “Growth of sapphire filaments from the melt”, Nature 216, 574–575 (1967).
  • [3] D.M. Wilson and L.R. Visser, “High performance oxide fibers for metal and ceramic composites”, in Processing of Fibers and Composites Conference, Barga, Italy, 2000.
  • [4] S.T. Mileiko, Metal and Ceramic Based Composites, Elsevier, Amsterdam, 1997.
  • [5] S.T. Mileiko, V.N. Kurlov, A.A. Kolchin, and V.M. Kiiko, “Fabrication, properties and usage of single crystalline YAG fibers”, Journal of the European Ceramic Society 22 (11), 1831–1837(2002).
  • [6] S.T. Mileiko, V.M. Kiiko, M.Yu. Starostin, A.A. Kolchin, and L.S. Kozhevnikov, “Fabrication and some properties of single crystalline mullite fibers”, Scripta Materialia 44, 249–255 (2001).
  • [7] V.N. Kurlov, V.M. Kiiko, A.A. Kolchin, and S.T. Mileiko, “Sapphire fibers grown by a modified internal crystallization method”, Journal of Crystal Growth 4 (204), 499–504 (1999).
  • [8] R. Asthana, S.N. Tewari, and S.L. Draper, “Strength degradation of sapphire fibers during pressure infiltration casting of sapphire-reinforced Ni-base superalloys”, Metallurgical and Materials Transactions 29A, 1527–1530 (1998).
  • [9] S.L. Draper and I.E. Locci, “Al2O3 fiber strength degradation in metal- and intermetallic-matrix composites”, Journal of Materials Research 9 (6), 1397–1411 (1994).
  • [10] R.R. Bowman, I.E. Locci, S.L. Draper, and A.K. Misra, “Strength of single crystal Al2O3 fibers in Ni-based intermetallic-matrix composites”, MRS Symposium Proceedings 350, 105–110 (1994).
  • [11] S.T. Mileiko, V.M. Kiiko, A.A. Kolchin, V.P. Korzhov, and V.M. Prokopenko, “Oxide fiber-Ni-base matrix composites – II. Mechanical behavior”, Composite Science and Technology 62, 181–193 (2002).
  • [12] S.T. Mileiko, “Oxide fiber-Ni-base matrix composites – III. A creep model and analysis of experimental data”, Composite Science and Technology 62 (2), 195–204 (2002).
  • [13] S.T. Mileiko, K.B. Povarova, A.V. Serebryakov, V.P. Korzhov, A.A. Kolchin, V.M. Kiiko, M.Yu. Starostin, N.S. Sarkissyan, and A.V. Antonova, “High-temperature creep properties of sapphire fiber/titanium aluminide-matrix composites”, Scripta Materialia 44 (10), 2463–2469 (2001).
  • [14] S.T. Mileiko, “Steady-state creep of a composite with short fibers”, Journal of Materials Science 5, 254–261 (1970).
  • [15] A. Kelly and K.N. Street, “Creep of discontinuous fiber composites – II. Theory for steady-state”, Proceedings of the Royal Society of London A 328, 283–293 (1972).
  • [16] S. Goto and M. McLean, “Role of interfaces in creep of fiberreinforced metal-matrix composites – I. Continuous fibers”, Acta Metallurgica et Materialia 39, 153–164 (1991).
  • [17] S.T. Mileiko, “Steady-state creep of a fibrous composite”, in Creep in Structures, IUTAM Symp., J. Hult (ed.), Goethenburg, Springer, Berlin, 96–106 (1972).
  • [18] S.T. Mileiko, N.S. Sarkissyan, A.A. Kolchin, and V.M. Kiiko, “Oxide fibers in a Ni-base matrix: do they degrade or become stronger?”, Journal of Materials: Design and Applications L3 (218), 193–200 (2004).
  • [19] S. Nourbakhsh, O. Sahin, W.H. Rhee, and H. Margolin, “Pressure casting of a zirconia-toughened alumina fiber-reinforced NiAl composite”, Metallurgical Transactions 22A, 3059–3064 (1991).
  • [20] J.E. Restall, A. Burwood-Smith, and K.F.A.Walles, “The interaction between some reinforcing materials in Al- and Ni-base matrices”, Metals and Materials 11, 467–473 (1970).
  • [21] S. Nourbakhsh, O. Sahin, W.H. Rhee, and H. Margolin, “Microstructure of Al2O3 fiber-reinforced superalloy (INCONEL 718) composites”, Metallurgical and Materials Transactions 27A, 451–458 (1996).
  • [22] S. Nourbakhsh, F. Liang, and H. Margolin, “Pressure casting of Ni3Al/alumina composites”, MRS Symposium Proceedings 133, 459–464 (1989).
  • [23] X.F. Chen, D.R. Johnson, and B.F. Oliver, “Microstructures from a directionally solidified NiAl-Cr eutectic deformed at room temperature”, Scripta Materialia 30 (8), 975–980 (1994).
  • [24] T. Hirano and T. Mawari, “Unidirectional solidification of Ni3Al by a floating zone method”, Acta Metallurgia et Materialia 41 (6), 1783–1789 (1993).
  • [25] R. Asthana, R. Tiwari, and S.N. Tewari, “The compressive properties of zone directionally solidified ¯-NiAl, and its offeutectic ternary alloys with Cr and W”, Materials Science and Engineering A 336, 99–109 (2002).
  • [26] H.K. Kim, J.C. Earthman, and E.J. Lavernia, “Directional solidification of Ni3Al”, Acta Materialia 40 (4), 637–647 (1992).
  • [27] J.L. Walter and H.E. Cline, “Stability of the directionally solidified eutectics NiAl-Cr and NiAl-Mo”, Metallurgical Transactions 4, 33–38 (1973).
  • [28] F.E. Heredia, M.Y. He, G.E. Lucas, A.G. Evans, H.E. Deve, and D. Konitzer, “The fracture resistance of directionally solidified dual-phase NiAl reinforced with refractory metals”, Acta Materialia 41 (2), 505–511 (1993).
  • [29] D.R. Johnson, S.M. Joslin, B.F. Oliver, R.D. Noebe, and J.D. Whittenberger, “Intermetallic/metallic polyphase in-situ composites”, MRS Symposium Proceedings, vol. 273, D. Miracle, J. Graves and D. Anton (eds.), 87–92 (1992).
  • [30] R.D. Noebe, R.R. Bowman, and J.I. Eldridge, “Initial evaluation of continuous Al2O3 fiber-reinforced NiAl composites”, MRS Symposium Proceedings, vol. 194, D.L. Anton et al (eds.), 323–331 (1990).
  • [31] D.I.T. Williams and A.P. Goodenough, Powder Metallurgy 10, 318– 324 (1967).
  • [32] R.M. Pilliar and J. Nutting, Philosophical Magazine, 16, 181–188 (1967).
  • [33] N. Grigorenko, V. Zhuravlev, V. Poluyanskaya, Y.V. Naidich, N. Eustathopoulos, J.F. Silvan, and J.C. Bihr, “Wettability of Al2O3 single crystals by Ni-Al melts”, Proceedings of Second International Conference on High Temperature Capillarity, 1997, Cracow, Poland, N. Eustathopoulos and N. Sobczak (eds.), 133–137 (1998).
  • [34] P. Kritsalis, V. Merlin, L. Coudurier, and N. Eustathopolos, “Effect of Cr on interfacial interaction and wetting mechanisms in Ni alloy/alumina systems”, Acta Metallurgica et Materialia 40, 1167–1175 (1992).
  • [35] R.M. Crispin and M. Nicholas, “The wetting and bonding behaviours of some nickel alloy-alumina systems”, Journal of Materials Science 11, 17–21 (1976).
  • [36] A. Tsoga, A. Naoumidis and P, Nikolopoulos, “Wettability and interfacial reactions in the systems Ni/YSZ and Ni/Ti-TiO2/YSZ, Acta Materialia 44 (9), 3679–3692 (1996).
  • [37] P. Nikolopoulos and D. Sotiropoulou, “Wettability between zirconia ceramics and the liquid metals Cu, Ni and Co”, Journal of Materials Science Letters 6, 1429–1430 (1987).
  • [38] J.F. Silvain, J.C. Bihr, and J. Douin, “Wettability, reactivity and stress relaxation of an NiAl(Ti)/Al2O3 composite”, Composites, 29A, 1175–1183 (1998).
  • [39] M. Nicholas, R.R. Forgan and D.M. Poole, “The adhesion of metal/alumina interfaces”, Journal of Materials Science, 3, 9–14 (1968).
  • [40] M.G. Nicholas, “Interactions at oxide-metal interfaces”, Materials Science Forum 29, 127–150 (1989).
  • [41] J.M. Howe, “Bonding, structure, and properties of metal/ceramic interfaces: Part 1. Chemical bonding, chemical reaction, and interfacial structure”, International Materials Reviews 38, 233–256 (1993).
  • [42] V. Merlin and N. Eustathopoulos, “Wetting and adhesion of Ni-Al alloys on ®-Al2O3 single crystals”, Journal of Materials Science 30, 3619–3624 (1995).
  • [43] M. Humenik and W.D. Kingery, “Metal-ceramic interactions – III. Surface tension and wettability of metal-ceramic systems”, Journal of the American Ceramic Society 37, 18–23 (1954).
  • [44] J.R. Ritter Jr. and M.S. Burton, “Adherence and wettability of nickel, nickel-titanium and nickel-chromium alloys to sapphire”, Transactions of the Metalurgicall Society of AIME 239, 21–26 (1967).
  • [45] C. Wan, P. Kritsalis, B. Drevet, and N. Eustathopoulos, “Optimization of wettability and adhesion in reactive nickel-based alloys/alumina systems by a thermodynamic approach”, Materials Science and Engineering, A207, 181–187 (1996).
  • [46] P. Lourdin, D. Juve and D. Treheux, “Nickel-alumina bonds: mechanical properties related to interfacial chemistry”, Journal of the European Ceramic Society, 16(7), 754–752 (1996).
  • [47] N. Grigorenko, V. Poluyanskaya, N. Eustathopoulos, and Y.V. Naidich, “Wettability and spreading kinetics of Ni and Ni-Pd melts”, in Proceedings of Second International Conference on High Temperature Capillarity, 1997, Krakow, Poland, N. Eustathopoulos and N. Sobczak (eds.), 27–34 (1998).
  • [48] C. Rado, S. Kalogeropoulou, and N. Eustathopoulos, “Wetting and bonding of Ni-Si alloys on silicon carbide”, Acta Materialia 47 (2), 461–473 (1999).
  • [49] C.S. Kanetkar, A.S. Kacar, and D.M. Stefanescu, “The wetting characteristics and surface tension of some Ni-based alloys on yttria, hafnia, alumina and zirconia substrates”, Metallurgical Transactions, 19A, 1833–1839 (1988).
  • [50] N. Sobczak, R. Asthana, M. Ksiazek, W. Radziwill, and B. Mikulowski, “The effect of temperature, matrix alloying, and substrate coatings on wettability and shear strength of Al2O3/Al couples”, Metallurgical and Materials Transactions, 35 A (3), 911–921 (2004).
  • [51] N. Sobczak, K. Nogi, H. Fujii, T. Matsumoto, K. Tamaga, and R. Asthana, “The effect of Cr thin films on wettability and bonding in Ni/alumina couples”, Joining of Advanced and Specialty Materials, J.E. Indacochea et al (eds.), ASM, 108–115 (2003).
  • [52] M. Nicholas, “The strength of metal/alumina interfaces”, Journal of Materials Science 3, 571–576 (1968).
  • [53] M. Ksiazek, N. Sobczak, W. Radziwill, and B. Mikulowski, “Influence of surface modification of alumina substrates on wetting-bond strength relationship in Cu/alumina”, Joining of Advanced and Specialty Materials, J.N. Indacochea et al (eds.), 96–100 (2003).
  • [54] N. Sobczak, M. Ksiazek, W. Radziwill, L. Stobierski, and B. Mikulowski, “Wetting-bond strength relationship in Al-AlN Bull. Pol. Ac.: Tech. 54(2) 2006 165 R. Asthana, S.T. Mileiko, and N. Sobczak system”, Transactions of Joining and Welding Research Institute 30, 125–130 (2001).
  • [55] N. Sobczak, L. Stobierski, M. Ksiazek, W. Radziwill, J. Morgiel, and B. Mikulowski, “Factors affecting wettability, structure and chemistry of reaction products in Al/Si3N4 system”, Transactions of Joining and Welding Researich Institute 30, 39–48 (2001).
  • [56] N. Sobczak, “Wettability, structure and properties of Al/Al2O3 interfaces”, Composites 3 (7), 301–312 (2003), (in Polish).
  • [57] N. Sobczak and R. Asthana, “The role of interfacial phenomena in wetting-bonding relationship in Al/ceramic couples”, Ceramic Transactions, vol. 158, Weil, Reimanis, and Lewinsohn (eds.), 3–17 (2005).
  • [58] A.F. Kalton, T.W. Clyne, S.J. Howard, and J. Janczak-Rusch, “Measurement of interfacial fracture energy by single fiber push-out testing and its application to the Ti-SiC system”, Acta Materialia 46 (11), 3175–3189 (1998).
  • [59] R. Asthana, S.N. Tewari, and R. Bowman, “Influence of fabrication technique on the fiber push-out behaviour in a sapphirereinforced NiAl-matrix composite”, Metallurgical and Materials Transactions 26A, 209–223 (1995).
  • [60] R. Asthana and S.N. Tewari, “Interface response to solidification in sapphire-reinforced Ni-base composites”, Advanced Composite Materials 9 (4), 265–307 (2000).
  • [61] N. Chandra and C.R. Ananth, “Analysis of interfacial behaviour in MMC’s and IMC’s by the use of thin slice push-out tests”, Composite Science and Technology 54 (1), 87–100 (1995).
  • [62] D.A. Koss, R.R. Petrich, M.N. Kallas, and J.R. Hellman, “Interfacial shear and matrix plasticity during fiber push-out in a metal-matrix composite”, Composite Science and Technology 51 (1), 27–33 (1994).
  • [63] V.M. Prokopenko and S.T. Mileiko, “Evaluation of the fiber/matrix interface strength by the pushing out of fibers of non-symmetrical cross-section”, Composite Science and Technology 61, 1649–1652 (2001).
  • [64] R.R. Bowman, A.K. Misra, and S.M. Arnold, “Processing and mechanical properties of Al2O3 fiber-reinforced NiAl composites”, Metallurgical and Matererials Transactions 26A, 615–628 (1995).
  • [65] L. Wang, K. Xu, R.R. Bowman, and R.J. Arsenault, “Interfaces in continuous filament-reinforced alumina/NiAl composites”, Metallurgical and Materials Transactions 26A, 897–903 (1995).
  • [66] S.N. Tewari, R. Asthana, R. Tiwari, R. Bowman, and J. Smith, “Influence of interfacial reactions on the fiber-matrix interfacial shear strength in sapphire-NiAl(Yb) composites”, Metallurgical and Materials Transaction, 26A, 477–491 (1995).
  • [67] R. Asthana, R. Tiwari, and S.N. Tewari, “Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire-NiAl composites”, Metallurgical and Materials Transactions 26A, 2175–2184 (1995).
  • [68] J.A. Wasynczuk and M. Ruhle, in Ceramic Microstructure-86, J.A. Pask and A.G. Evans (eds.), Plenum Press, New York, 341–348 (1987).
  • [69] K.P. Trumble and M. Ruhle, “The thermodynamics of spinel interphase formation at diffusion-bonded NiAl/Al2O3 interfaces”, Acta Materialia 39, 1915–1924 (1991).
  • [70] S. Nourbakhsh, O. Sahin, W.H. Rhee, and H. Margolin, “Fiber strength and interface strength in single crystal Al2O3 fiberreinforced Ni3Al-based composites”, Metallurgical Transactions 25A, 1259–1265 (1994).
  • [71] S.T. Mileiko, V.M. Kiiko, A.A. Kolchin, A.V. Serebryakov, V.P. Korzhov, M. Yu Starostin, and N.S. Sarkissyan, “Oxide fiber/Ni-based matrix composites – I. Fabrication and microstructure”, Composites Science and Technology 62, 167–169 (2002).
  • [72] S.T. Mileiko, N. Sobczak, and R. Asthana, “Interface considerations in designing creep-resistant Ni-base composites”, 2006, (to be published).
  • [73] J.M. Yang and S.M. Jeng, “Tailoring the interface for fiberreinforced intermetallic-matrix composites”, Structural Intermetallics, R. Darolia et al. (eds.), 773–781 (1993).
  • [74] B.J. Dalgleish, E. Saiz, A.P. Tomsia, R.M. Cannon, and R.O. Ritchie, “Interface formation and strength in ceramic-metal systems”, Scripta Materialia 31 (8), 1109–1114 (1994).
  • [75] N. Eustathopoulos and B. Drevet, “Relationship between reactivity and wettability in metal/oxide systems”, Composite Interfaces 2 (1), 29–41 (1994).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.