Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BPG5-0005-0042

Czasopismo

Bulletin of the Polish Academy of Sciences. Technical Sciences

Tytuł artykułu

Stability of positive linear discrete-time systems

Autorzy James, G.  Rumchev, V. 
Treść / Zawartość http://bulletin.pan.pl/ http://journals.pan.pl/dlibra/journal/95347 http://www.degruyter.com/view/j/bpasts
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The main focus of the paper is on the asymptotic behaviour of linear discrete-time positive systems. Emphasis is on highlighting the relationship between asymptotic stability and the structure of the system, and to expose the relationship between null-controllability and asymptotic stability. Results are presented for both time-invariant and time-variant systems.
Słowa kluczowe
EN positive systems   equilibrium points   stability  
Wydawca Polska Akademia Nauk, Wydział IV Nauk Technicznych
Czasopismo Bulletin of the Polish Academy of Sciences. Technical Sciences
Rocznik 2005
Tom Vol. 53, nr 1
Strony 1--8
Opis fizyczny Bibliogr. 22 poz.
Twórcy
autor James, G.
autor Rumchev, V.
  • Control Theory and Applications Centre, Coventry University, Priory Street, Coventry, CV1 5FB, UK., g.james@coventry.ac.uk
Bibliografia
[1] D.J.G. James and V.G. Rumchev, “Cohort-type models and their reachability and controllability properties”, Systems Science 26, 43–54 (2000).
[2] D.J.G. James and V.G.Rumchev, “Reachability and controllability of compartmental systems”, Systems Science 26, 5–13 (2000).
[3] D.J.G. James and V.G. Rumchev, “A fractional-flow model of serial manufacturing systems with rework and its reachability and controllability properties”, Systems Science 27, 49–59 (2001).
[4] D.J.G. James and V.G. Rumchev, “Controlled balanced growth of robot population”, Proceedings 9th International Symposium on Artificial Life and Robotics, (ed: M. Sugisaka and H. Tanaka), Beppu, Japan, 2, 622–628 (2004).
[5] D.G. Luenberger, Introduction to Dynamical Systems, Wiley, New York, 1979.
[6] V.G. Rumchev, L. Caccetta and S. Kostova, “Positive linear dynamic model of mobile source of pollution and problems of control”, Proceedings of 16th International Conference Systems Engineering, (ed: K.J. Burnham and O.C.L. Haas), Coventry University, Coventry 2, 602–607 (2003).
[7] V.G. Rumchev and D.J.G. James, “The role of nonnegative matrices in discrete-time mathematical modeling”, International Journal Mathematical Education in Science and Technology 21, 161–182 (1990).
[8] H. Minc, Non-negative Matrices, John Wiley & Sons, NY, 1988.
[9] L. Farina and S. Rinaldi, Positive Linear Systems – Theory and Applications, John Wiley & Sons, NY, 2000.
[10] T. Kaczorek, Positive 1D and 2D Systems, Springer, London, 2002.
[11] A. Graham, Non-negative Matrices and Applicable Topics in Linear Algebra, Ellis Horwood, Chichester, UK, 1988.
[12] A. Berman and R. Plemmons, Non-negative Matrices in the Mathematical Sciences, SIAM: Classics in Applied Mathematics, Philadelphia, 1994.
[13] H. Wieland, “Unzerlegbare nicht negtiven matrizen”, Mathematisce Zeitschrift 52, 642–648 (1950).
[14] V.G. Rumchev and D.J.G. James, “Controllability of positive linear discrete-time systems”, International Journal of Control 50, 45–857 (1989).
[15] S. Muratori and S. Rinaldi, “Excitability, stability and sign of the equilibria in positive linear systems”, Systems and Control Letters 16, 59–63 (1991).
[16] V.G. Rumchev and D.J.G. James, “Spectral characterization of pole-assignment for positive linear discrete-time systems”, International Journal of Systems Science 16, 295–312 (1995).
[17] R.A. Horn and C.A. Johnson, Matrix Analysis, Cambridge Press, Cambridge, UK 1985.
[18] R. Bhatia, L. Elsner and G. Krause, “Bounds for the variation of the roots of a polynomial and eigenvalues of a matrix”, Linear Algebra and its Applications 142, 195–209 (1990).
[19] M. Haviv, Y. Ritov and U.G. Rothblum, “Iterative methods for approximating the subdominant modulus of an eigenvalue of a nonnegative matrix”, Linear Algebra and its Applications 87, 61–75 (1987).
[20] T.S. Leong, “A note on upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices”, Linear Algebra and its Applications 106, 1–4 (1988).
[21] H. Wolkowicz and G.P.H. Styan, “Bounds for eigenvalues using traces”, Linear Algebra and its Applications 29, 471–506 (1980).
[22] V.G. Rumchev and J. Adeane, “Reachability and controllability of discrete-time positive linear systems”, Control and Cybernetics 33, 85–94 (2004).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPG5-0005-0042
Identyfikatory