PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of risk fuzziness on strategies of drawing up contracts

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A contract usually consists in weighing risk and motivation [21]. Most contracts are constructed in such a way that both players share of risk. Only one party taking the risk reduces the motivation of the players. When making decisions the players have a range of knowledge on the acts of "Nature", i.e. they are aware that a random factor can influence their payments. One uses, as a rule, the usefulness function in contracts. It is also possible to use functions determining the connection between sums of money and usefulness (e.g. v(x) is the usefulness of receiving the x currency units). One includes the risk concept in considerations in the form of so-called reluctance to risk. If somebody is reluctant to risk this means that he prefers to receive a definite sum of money than to hope for the best which can give either a bigger or a smaller payment. In the present considerations [24], random parameters as well as estimated and non-measurable parameters are subjected to fuzziness. The influence of fuzzy information and any forms of uncertain knowledge is extremely essential in the strategic games and to a high degree decides on the final results of the game.
Słowa kluczowe
Rocznik
Strony
211--219
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Institute of Mathematics and Computer Science, Czestochowa University of Technology
autor
  • Institute of Mathematics and Computer Science, Czestochowa University of Technology
autor
  • Institute of Mathematics and Computer Science, Czestochowa University of Technology
Bibliografia
  • [1] Aumann R., Survey of repeated games, In Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, Institute Mannheim, Vein 1981.
  • [2] Bamos A., On Pseudo-Games, Annals of Mathematical Statistics 1968, 39.
  • [3] Binmore K., Kirman P., Tani P., Frontiers and Game Theory, MIT Press, 1993.
  • [4] Conway J.H., On number and Games, Academic Press, 1976.
  • [5] Czogala E., Perdycz W., Elements and methods in fuzzy sets theory, PWN, Warsaw 1985 (in Polish).
  • [6] Ellison G., Learning with One Rational Player, MIT Press, 1994.
  • [7] Fudenberg D., Tirole J., Game Theory, MIT Press, 1991.
  • [8] Fundenberg D., Kreps D., Lectures on Learning and Equilibrium in Strategic Form Games, Core Lecture Series, 1990.
  • [9] Harsanyj J., Selten R., A General Theory of Equilibrium Selection in Games, MIT Press, 1988.
  • [10 ] Harsanyj J., Games with Randomly Disturbed Payoffs, International Journal of Game Theory 1973, 2.
  • [11] Hofbauer J., Stability for Best Response Dynamic, University of Viena, 1995.
  • [12] Isaacs R., Differential games, Wiley, 1965.
  • [13] Jaulin L., Kieffer M., Didrit O., Walter E., Applied Interval Analysis, Springer Verlag, London 2001.
  • [14] Lachwa A., Fuzzy world of files, numbers, relations, facts, rules and decisions, Akademicka Oficyna Wydawnicza Exit, Warsaw 2001 (in Polish).
  • [15] Loeve M., Probability Theory, Springer Verlag, Berlin 1978.
  • [16] Luce D., Raiffa H., Games and Decisions, WN PWN, Warsaw 1996 (in Polish).
  • [17] Nachbar J., Evolutionary Selection Dynamic in Games, International Journal of Games Theory 1990, 19.
  • [18] Nachbar J., Prediction, Optimization and Learning in Repeated Games, Econometrica 1995.
  • [19] Nash J.F., Non cooperative games, Ann. Math. 1951, 2, 295-296.
  • [20] Nash J., Equilibrium points in N-persons games, National Academy of Sciences 1950, 36, 48-49.
  • [21] Owen G., Theory of Games, PWN, Warsaw 1982 (in Polish).
  • [22] Ozyildirim S., A discrete dynamic game approach, Computers Math. Applic. 1996, 32 (5), 43-56.
  • [23] Papadimitriou C.H., Games against nature, J. Comp. System Sci. 1985, 31, 288-301.
  • [24] Piegat A., Fuzzy modelling and controlling, Akademicka Oficyna Wydawnicza Exit, Warsaw 2003 (in Polish).
  • [25] Shapley L., Some Topics in Two-Person Games, In Advances in Game Theory, Princeton University Press, 1964.
  • [26] Straffin P.D., Game theory. Wydawnictwo Naukowe Scholar, Warsaw 2001 (in Polish).
  • [27] Syslo M., Deo N., Kowalik J., Discrete optimization algorithms, WN PWN, Warsaw 1995 (in Polish).
  • [28] Vavock V., Aggregating Strategies. Conference on Computational Learning Theory, 1990.
  • [29] Watson J., Strategy. Introduction to game theory, WNT, Warsaw 2005 (in Polish).
  • [30] Wetzeel A., Evaluation of the effectiveness of genetic algorithms in combinatorial optimization, University of Pittsburgh, 1983. [31] Zadeh L.A., Fuzzy limitations calculus; design and systems; methodological problems, Ossolineum 1980 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0028-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.