Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BPBE-0007-0002

Czasopismo

IPPT Reports on Fundamental Technological Research

Tytuł artykułu

Zastosowanie techniki śledzenia markerów akustycznych w ocenie funkcji lewej komory serca. Badania in vivo i in vitro

Autorzy Olszewski, R. 
Treść / Zawartość http://prace.ippt.gov.pl/
Warianty tytułu
EN Application of speckle tracking echocardiography in the assessment of left ventricular function. In vivo and in vitro studies
Języki publikacji PL
Abstrakty
PL W ciągu ostatniej dekady echokardiografia stała się podstawową metodą obrazowania diagnostycznego serca i naczyń. Szerokie zastosowanie echokardiografii jest możliwe dzięki jej dwóm podstawowym cechom: łatwej dostępności i nieinwazyjności. Otrzymywany w czasie rzeczywistym obraz ultrasonogra?czny doskonale odzwierciedla dynamiczną funkcję serca. Dwuwymiarowa echokardiogra?a (2D) stała się potężnym narzędziem do ciągłego monitorowania rozwoju dysfunkcji mięśnia i chorób serca. Ponadto echokardiogra?a 2D jest metodą relatywnie niedrogą, mającą zastosowanie zarówno w pracowni, jak i bezpośrednio przy łóżku chorego. Echokardiogra?a 2D jest integralną częścią nowoczesnej kardiologii służącą zarówno do oceny wymiarów, funkcji serca, jak również w diagnostyce różnicowej. Skurczowa i/lub rozkurczowa dysfunkcja lewej komory (LK) serca jest cechą charakterystyczną dla większości chorób serca. Jednakże echokardiograficzna ocena LK napotyka również na wiele ograniczeń; np. obrazowanie M-mode i 2D jest zależne od umiejętności osoby badającej, a obliczenia objętości i frakcji wyrzutowej opierają się na wzorach geometrycznych, które nie opisują w sposób wystarczający powiększonej czy zniekształconej w trakcie remodelingu LK. Dopplerowskie obrazowanie prędkości ruchu tkanek (DTI) jest echokardiograficzną metodą, której zastosowanie było dokładnie badane w różnych chorobach serca. Poprzez zastosowanie odpowiednich technik filtracji, poza wizualizacją przepływu krwi, stał się również możliwy pomiar prędkości ruchu tkanki, charakteryzujący się wysoką amplitudą sygnału w zakresie bardzo małych częstotliwości. Jednakże ponieważ prędkość ruchu danego obszaru mięśnia sercowego jest mierzona w stosunku do punktu odniesienia umieszczonego w głowicy ultradźwiękowej na zewnątrz klatki piersiowej, to pomiar prędkości danego obszaru techniką DTI nie jest wolny od wpływu przemieszczenia się całego mięśnia sercowego oraz od jego pociągania pasywnego przez sąsiednie segmenty. Ponadto wadą tej metody jest również zależność wartości prędkości miokardialnych od kąta padania wiązki ultradźwięków oraz niskie małe wartości prędkości w segmentach koniuszkowych. Poprawa wizualizacji wsierdzia LK przez podanie środka kontrastowego ułatwia rozpoznanie odcinkowych zaburzeń kurczliwości. Niestety, mimo to, również echokardiografia z podaniem środka kontrastującego ma pewne ograniczenia, np. konieczność uzyskania odpowiedniego okna akustycznego, ruch oddechowy płuc oraz zjawiska fizyczne, jak tłumienie sygnału ultradźwiękowego czy efekt cieniowania. Mimo rozwoju nowych metod służących poprawie jakości uzyskanego obrazu i ocenie odkształcenia mięśnia sercowego właściwa ocena funkcji LK ciągle pozostaje wyzwaniem echokardiograficznym. Technika śledzenia markera akustycznego (ang. speckle tracking - 2D-TMSA) jest ostatnio wprowadzoną techniką do precyzyjnego obliczania odkształcenia mięśnia sercowego poprzez analizę ruchu markerów akustycznych w obrazie echograficznym 2D, rutynowo uzyskanym w trakcie badania. 2D-TMSA jest metodą pozwalającą na pomiar ruchu mięśnia sercowego we wszystkich kierunkach, ponieważ jest wolna od zależności kątowej ruchu ściany i kierunku padania wiązki ultradźwiękowej. W tej technice możemy mierzyć takie parametry mięśnia sercowego, jak jego odkształcenie (strain) i prędkość odkształcenia miokardium (strain rate). Technika 2D-TMSA wyznaczania obu wielkości, odkształcenia i szybkości odkształcenia ma ograniczenia związane z przemieszczaniem się całego serca w trzech wymiarach. Wielkość odkształcenia miokardium obliczana w technice 2D-TMSA opiera się na wartościach otrzymanych w płaszczyźnie dwuwymiarowej, ignorując trójwymiarowy ruch serca (3D). Najnowsza technologia śledzenia przemieszczania się markerów akustycznych 3D-TMSA przełamuje te potencjalne ograniczenia. Cel pracy 1. Opracowanie modelu matematycznego lewej komory serca oraz numerycznego modelu wizualizacji ultrasonograficznej. 2. Stworzenie wzorca echokardiograficznego lewej komory serca do analizy różnych stanów fizjologicznych i patologicznych w nowej technice 2DTSMA. 3. Ocena zgodności prędkości ruchu środkowych segmentów lewej komory serca w technikach 2D-TSMA i MRI dla osób uprawiających wyczynowo wioślarstwo. 4. Wyznaczenie zakresu prawidłowych wartości odkształcenia ściany lewej komory serca (strain) w technice 3D-TSMA dla zdrowych osób uprawiających sport. Metody Do badania zastosowano matematyczny model ruchu "ziarna" - markerów akustycznych związany z kurczliwością lewej komory serca. Powstał on na podstawie obserwacji akcji rzeczywistego serca, obrazowanego przez ultrasonograf w projekcji poprzecznej, przymostkowej, w obrazowaniu 2D - w celu numerycznego modelowania obrazów ultrasonograficznych ścian serca, a zwłaszcza zachowania się markerów akustycznych i odkształcenia radialnego środkowych segmentów lewej komory. Do badań echokardiograficznych opracowano i zbudowano dwa wzorce lewej komory. Pierwszy wzorzec ultrasonograficzny LK (WGP) dla badania przemieszczania się markerów akustycznych w trakcie skurczu i rozkurczu oraz drugi model zawału lewej komory (WZLK). WGP został wykonany z gąbki poliuretanowej, w postaci wydrążonego walca o długości 10 cm, średnicy zewnętrznej 5 cm, średnicy wewnętrznej 3 cm i o grubości ściany 1 cm, a drugi WZLK - z materiału alkoholu poliwinylowego w postaci elastycznej rurki o długości 12 cm, grubości ściany 1 cm i średnicy zewnętrznej 5 cm. We wzorcu WZLK obszar odpowiadający dwóm segmentom poddano procesowi obróbki termicznej (suszenia), co skutkowało jego usztywnieniem. Następnie wzorce ultrasonogra?czne podłączono do komputerowo sterowanej, hydraulicznej pompy tłokowej firmy (Vivitro Inc.TM). Wzorce LK zanurzono w wodzie i badano ich odkształcenie (strain) i tempo odkształcenia (strain rate), przy zastosowaniu dostępnych komercyjnie algorytmów 2D-TMSA. Przyjęto następujące parametry: wpompowywanie objętości wody 12-50 ml z częstością cykli pracy: 40, 60, 100, 120 na minutę, dla kąta padania wiązki ultradźwiękowej 90st. i 65st. w stosunku do osi wzorca. W części klinicznej badaniu echokardiograficznemu poddano dwie grupy ochotników (n = 118). U 14 zdrowych mężczyzn w wieku 23 3,2 lat uprawiających wyczynowo wioślarstwo wykonano badanie echokardiograficzne techniką 2D aparatem ?rmy IE 33 (Philips Medical System, Andover, MA, USA) i badanie serca techniką MRI, gdzie zastosowano skaner 1,5-T MR (Simens, Erlangen, Niemcy). Prędkości radialne środkowych segmentów LK obliczano techniką 2D-TMSA w projekcji przymostkowej w osi krótkiej, podobnie jak w MRI. Dla porównania wartości prędkości uzyskanych metodą echokardiograficzną i MRI użyto liniowej regresji, analizę zgodności przeprowadzono testem Bland-Altmana. Drugą analizowaną grupę stanowiło 104 ochotników uprawiających amatorsko sport, w wieku 19-60 lat; średnia 46,6. Badania wykonywano za pomocą echokardiografu firmy Toshiba Artida, Toshiba Medical Systems, Tokio, Japonia. Stosując automatyczną trójwymiarową analizę 3D-TMSA, obliczono dla poszczególnych segmentów maksymalne wartości odkształcenia strain dla ruchupodłużnego, okrężnego, radialnego i trójwymiarowego LK. Wartości współczynnika zmienności pomiarów, de?niowanego jako iloraz odchylenia standardowego do wartości średniej pomiędzy dwoma badaczami, przedstawiono dla każdego z odkształceń. Wyniki Matematyczny model ultrasonograficznej wizualizacji jest realizacją w pełni kontrolowanego środowiska diagnostycznego. Zaproponowany matematyczny model LK w pełni opisuje odkształcenie radialne ściany modelu lewej komory, podobny do obserwowanego w sercu ludzkim. Pozwala on na testowanie obecnie dostępnych algorytmów śledzenia markerów akustycznych, jak również na ich ulepszanie. Uzyskane obrazy wzorców lewej komory doskonale naśladowały echogram LK w obrazowaniu 2D w projekcji przymostkowej w osi krótkiej. We wszystkich przypadkach pomiarów odkształcenia radialnego i okrężnego, jak również tempa odkształcenia radialnego i okrężnego, niezależnie od prędkości pracy wzorca i objętości wpompowywanej krwi, nie zaobserwowano znamiennie istotnych różnic pomiędzy seriami pomiarowymi dla dwóch kątów ustawienia głowicy ultradźwiękowej względem wzorca ultrasonograficznego. WZLK pozwala naśladować obszar LK objęty zawałem. W grupie uprawiających wyczynowo wioślarstwo uwidoczniono wszystkie 84 badane segmenty, a automatycznej analizie 2D-TMSA poddano 92% segmentów. Pozostałe 8% segmentów wymagało korekcji ręcznej. Maksymalna wartość uzyskanej prędkości ruchu środkowych segmentów dla poszczególnych segmentów LK, uzyskanych metodą 2D-TMSA, mieściła się w przedziale 3,61-5,22 cm/s. W badaniu MRI 96% segmentów analizowano automatycznie, a 4% wymagało korekcji ręcznej. Maksymalna wartość uzyskanej prędkości ruchu środkowych segmentów dla poszczególnych segmentów LK uzyskanych w MRI mieściła się w przedziale 3,48-4,94 cm/s. Uzyskane wyniki wskazują na duży poziom zgodności dla obu technik, współczynnik korelacji bliski r = 0;9. W trójwymiarowym badaniu echokardiograficznym analizie metodą 3D-TMSA poddano odkształcenie strain przy podziale LK na 16 segmentów. Spośród analizowanych segmentów 83% segmentów koniuszkowych, 87,3% środkowych i 87,5% podstawnych było poddane pełnej, prawidłowej analizie automatycznej 3D-TMSA. Średni czas badania wynosił 4,1 1,2 min. Maksymalna wartość odkształcenia radialnego segmentów podstawnych obliczona techniką 3D-TMSA była znamiennie (p < 0;001) wyższa od maksymalnej wartości odkształcenia segmentów koniuszkowych. Odkształcenia: 3D, radialne, podłużne i okrężne dla LK w technice 3D-TMSA wynosiły odpowiednio: 35,1 15,4%; 33,6 15,3%; 17,4 6,1%; 25,3 8,3%. Współczynnik zmienności pomiarów wynosił: 6% dla pomiarów odkształcenia radialnego, 8% odkształcenia okrężnego i 8,5% dla pomiarów odkształcenia podłużnego, a dla odkształcenia globalnego 3D - 4%. Wnioski 1. Opisany matematyczny model lewej komory serca w pełni odzwierciedla odkształcenia radialne ścian zachodzące w ludzkim sercu. 2. Proponowany przez autora model numeryczny wizualizacji ultrasonograficznej jest realizacją w pełni kontrolowanego środowiska diagnostycznego, opartego na różnych typach aparatów echokardiograficznych. 3. Matematyczny model lewej komory serca w opisanym środowisku wizualizacji ultrasonograficznej pozwala testować algorytmy śledzące i analizujące rozkłady markerów akustycznych, a także doskonalić istniejące algorytmy lub wspierać konstrukcje nowych. 4. Opracowane i wykonane wzorce lewej komory serca, jak i wzorzec zawału serca, wykazały w pełni ich przydatność do badań nad nową echokardiograficzną techniką 2D-TMSA. 5. Przedstawione wzorce ultrasonograficzne mogą służyć do analizy odkształceń ścian lewej komory serca zarówno w stanach fizjologicznych, jak i patologicznych. 6. Wyniki przeprowadzonych badań wskazują na przydatność zastosowanego materiału do konstrukcji lewej komory serca, czego dowodzi model zawału serca, a to z uwagi na osiągnięcie porównywalnego, radialnego przemieszczania ścian i porównywalnej wartości odkształceń niezależnie od kąta padania wiązki ultradźwiękowej. 7. Maksymalne wartości prędkości skurczowej dla środkowych segmentów lewej komory u osób uprawiających wioślarstwo, otrzymane metodą 2DTMSA, są zgodne z wartościami prędkości otrzymanymi metodą MRI. 8. Metoda śledzenia markerów akustycznych 2D-TMSA daje właściwą informację o ruchu środkowych segmentów lewej komory u osób uprawiających wioślarstwo. Jest nową, obiecującą techniką pozwalającą na szersze jej zastosowanie do analizy prędkości ruchu segmentów lewej komory w dalszych badaniach klinicznych. 9. Wykazano, że technika 3D-TMSA jest prostą metodą do wyznaczania wartości odkształcenia lewej komory serca.
EN The thesis reports the research report aimed at the application of speckle tracking echocardiography (TMSA) in the assessment of left ventricular function (LV). It is devoted to four particular aspects: to work out a mathematical model of the LV as well as a numerical model of ultrasonographic visualization, create an echocardiographic model of the LV enhancing the in vitro analysis of various physiological and pathological conditions, estimate the congruity of the velocity of movement for mid-segments of the LV using 2D-TMSA and magnetic MRI techniques for athletes who engage in rowing and finally, to determine the range of correct values for the LV strain in the 3D-TMSA technique for healthy subjects who engage in sports. The monograph consists of eight chapters. In the beginning the author provides the abbreviations and symbols, and next addresses the objectives and backgrounds of echocardiography and systolic function of LV. The current knowledge about Tissue Doppler, TMSA and the echocardiographic parameters of deformation like strain rate and strain in the 2D-TMSA, are described in detail in Chapters 2 and 3. Chapters 4–6 report the novel part of the research. These Chapters present the original contribution of the author. The aims of the research, methods and results are described The dedicated mathematical model of speckle displacement accompanying the ventricular contraction was also discussed. Both tracking the position of acoustic markers during cardiac cycle in the mid-segments of LV and radial strain were modeled. In Chapter 5 the description of two novel dynamic ultrasonic phantoms of the LV to imitate a beating heart is given. Next, two groups of healthy volunteers used in vivo studies are described. Chapter 6 reports the final results both for in vivo and in vitro experiments. The final Chapters 7 and 8 conclude the monograph and recapitulate the main achievements of the reported research and provide discussion of the original results.
Słowa kluczowe
PL ultrasonografia   echokardiografia   lewa komora serca   markery akustyczne  
EN echocardiography   two-dimensional speckle tracking   speckle modeling   ultrasound phantoms   ventricular systolic function   strain   strain rate   three-dimensional speckle tracking  
Wydawca Instytut Podstawowych Problemów Techniki PAN
Czasopismo IPPT Reports on Fundamental Technological Research
Rocznik 2012
Tom nr 2
Strony 5--161
Opis fizyczny Bibliogr. 364 poz.
Twórcy
autor Olszewski, R.
Bibliografia
1. Hoffman P., Pruszczyk P. Echokardiografia praktyczna, Wydawnictwo Lekarskie PZWL, Warszawa 2001.
2. Hoffman P., Kasprzak J.D. Echokardiografia, Via Medica, Gdańsk 2004.
3. Podolec P., Tracz W., Hoffman P. Echokardiografia praktyczna, Medycyna Praktyczna, Kraków 2004.
4. Klisiewicz A., Szymański P., Hoffman P. Ostry dyżur echokardiograficzny, Medipage, Warszawa 2009.
5. Płońska-Gosciniak E., Szyszka A., Kukulski T., Kasprzak J.D., Gąsior Z., Gackowski A., Siwińska A., Braksator W., Gołby P., Pruszczyk P., Trojanowska O., Firek B., Mińczykowski A. Standardy kardiologiczne 2011 okiem echokardiografisty, Medical Tribune Polska, Warszawa 2011.
6. Olszewski R., Warmiński J., Adamus J. Urazy serca. Nowa Klin., 11-12: 1152–1156, 2002.
7. http://www.gereports.com/vscan-pocket-sized-ultra-smart-ultrasound-unveiled
8. Liebo M.J., Israel R.L., Lillie E.O., Smith M.R., Rubenson D.S., Topol E.J. Is pocket mobile echocardiography the next-generation stethoscope? A cross-sectional comparison of rapidly acquired images with standard transthoracic echocardiography. Annals of Internal Medicine, 155: 33–38, 2011.
9. Pelliccia F., Palmiero P., Maiello M., Losi M.A. Italian chapter of the international society of cardiovascular ultrasound expert consensus document on training requirements for noncardiologists using hand-carried ultrasound devices. Echocardiography, 6: 745–750, 2012.
10. Jakubowski W. Diagnostyka ultrasonograficzna w gabinecie lekarza rodzinnego, II. Warszawa-Zamość, 2003.
11. Thomson H.L., Basmadjian A.J., Rainbird A.J., Razavi M., Avierinos J.F., Pellikka P.A., Bailey K.R., Breen J.F., Enriquez-Sarano M. Contrast echocardiography improves the accuracy and reproducibility of left ventricular remodeling measurements: A prospective, randomly assigned, blinded study. Journal of the American College of Cardiology, 38: 867–875, 2001
12. Cheitlin M.D., Alpert J.S., Armstrong W.F., Aurigemma G.P., Beller G.A., Bierman F.Z., Davidson T.W., Davis J.L., Douglas P.S., Gillam L.D., Lewis R.P., Pearlman A.S., Philbrick J.T., Shah P.M., Williams R.G., Ritchie J.L., Eagle K.A., Gardner T.J., Garson A., Gibbons R.J., O’Rourke R.A., Ryan T.J. Acc/aha guidelines for the clinical application of echocardiography: Executive summary. A report of the american college of cardiology/american heart association task force on practice guidelines (committee on clinical application of echocardiography). Developed in collaboration with the american society of echocardiography. Journal of the American College of Cardiology, 29: 862–879, 1997.
13. Olszewski R., Marciniak W., Nowicki A., Etienne J., Gil M., Karłowicz P., Adamus J. Poprawa echokardiograficznej oceny lewej komory przy zastosowaniu perflenapentu i obrazowania harmonicznego. Pol. Merkuriusz Lek., 5: 132–135, 1998.
14. Yong Y., Wu D., Fernandes V., Kopelen H.A., Shimoni S., Nagueh S.F., Callahan J.D., Bruns D.E., Shaw L.J., Quinones M.A., Zoghbi W.A. Diagnostic accuracy and cost-effectiveness of contrast echocardiography on evaluation of cardiac function in technically very difficult patients in the intensive care unit. The American Journal of Cardiology, 89: 711–718, 2002.
15. Reilly J.P., Tunick P.A., Timmermans R.J., Stein B., Rosenzweig B.P., Kronzon I. Contrast echocardiography clarifies uninterpretable wall motion in intensive care unit patients. Journal of the American College of Cardiology, 35: 485–490, 2000.
16. Mulvagh S.L., Rakowski H., Vannan M.A., Abdelmoneim S.S., Becher H., Bierig S.M., Burns P.N., Castello R., Coon P.D., Hagen M.E., Jollis J.G., Kimball T.R., Kitzman D.W., Kronzon I., Labovitz A.J., Lang R.M., Mathew J., Moir W.S., Nagueh S.F., Pearlman A.S., Perez J.E., Porter T.R., Rosenbloom J., Strachan G.M., Thanigaraj S., Wei K., Woo A., Yu E.H., Zoghbi W.A. American society of echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 21: 1179–1201, 2008; quiz 1281.
17. Kitzman D.W., Goldman M.E., Gillam L.D., Cohen J.L., Aurigemma G.P., Gottdiener J.S. Efficacy and safety of the novel ultrasound contrast agent perflutren (definity) in patients with suboptimal baseline left ventricular echocardiographic images. The American Journal of Cardiology, 86: 669–674, 2000.
18. Olszewski R., Adamus J. Echokardiograficzne badania kontrastowe. Standardy Badań Ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego. Pod redakcją Wiesława Jakubowskiego, Praktyczna Ultrasonografia. Tom I: 39–42, WarszawaZamość, 2003.
19. Wei K. Contrast echocardiography: Applications and limitations. Cardiology in Review, 20: 25–32, 2012.
20. Gaibazzi N., Silva L., Reverberi C. Safety and positive predictive value of high-dose dipyridamole stress-echocardiography with or without contrast flash-replenishment perfusion imaging in patients with suspected or known coronary artery disease. International Journal of Cardiology, 154: 382–383, 2012.
21. Dolan M.S., Riad K., El-Shafei A., Puri S., Tamirisa K., Bierig M., St Vrain J., McKinney L., Havens E., Habermehl K., Pyatt L., Kern M., Labovitz A.J. Effect of intravenous contrast for left ventricular opacification and border definition on sensitivity and specificity of dobutamine stress echocardiography compared with coronary angiography in technically difficult patients. American Heart Journal, 142: 908–915, 2001.
22. Plana J.C., Mikati I.A., Dokainish H., Lakkis N., Abukhalil J., Davis R., Hetzell B.C., Zoghbi W.A. A randomized cross-over study for evaluation of the effect of image optimization with contrast on the diagnostic accuracy of dobutamine echocardiography in coronary artery disease the optimize trial. JACC. Cardiovascular Imaging, 1: 145–152, 2008.
23. Kurt M., Shaikh K.A., Peterson L., Kurrelmeyer K.M., Shah G., Nagueh S.F., Fromm R., Quinones M.A., Zoghbi W.A. Impact of contrast echocardiography on evaluation of ventricular function and clinical management in a large prospective cohort. Journal of the American College of Cardiology, 53: 802–810, 2009.
24. Nucifora G., Faletra F.F. Current applications of contrast echocardiography. Minerva Cardioangiologica, 59: 519–532, 2011.
25. Flachskampf F.A., Schmid M., Rost C., Achenbach S., DeMaria A.N., Daniel W.G. Cardiac imaging after myocardial infarction. European Heart Journal, 32: 272–283, 2011.
26. Gasior Z. The effect of bicycle exercise and atrial pacing on left ventricular volume and function in healthy persons and in patients with coronary artery disease. An echocardiographic study. Cor et Vasa, 28: 15–21, 1986.
27. Pasierski T., Szwed H., Malczewska B., Firek B., Kosmicki M., Rewicki M., Kowalik I., Sadowski Z. Advantages of exercise echocardiography in comparison to dobutamine echocardiography in the diagnosis of coronary artery disease in hypertensive subjects. Journal of Human Hypertension, 15: 805–809, 2001.
28. Feigenbaum H., Amstrong W.F., Ryan T. Feigenbaum’s echocardiography. Lippincott Williams & Wilkins, 2005.
29. Becher H., Burns N.B. Handbook of contrast echocardiography lv function and myocardial perfusion. Springer Verlag, 2000.
30. Douglas P.S., Garcia M.J., Haines D.E., Lai W.W., Manning W.J., Patel A.R., Picard M.H., Polk D.M., Ragosta M., Parker Ward R., Weiner R.B. Accf/ase/aha/asnc/hfsa/hrs/scai/sccm/scct/scmr 2011 appropriate use criteria for echocardiography. A report of the american college of cardiology foundation appropriate use criteria task force, american society of echocardiography, american heart association, american society of nuclear cardiology, heart failure society of america, heart rhythm society, society for cardiovascular angiography and interventions, society of critical care medicine, society of cardiovascular computed tomography, society for cardiovascular magnetic resonance american college of chest physicians. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 24: 229–267, 2011.
31. Picano E. Stress echocardiography. Springer Verlag, 1992.
32. Douglas P.S., Khandheria B., Stainback R.F., Weissman N.J., Peterson E.D., Hendel R.C., Stainback R.F., Blaivas M., Des Prez R.D., Gillam L.D., Golash T., Hiratzka L.F., Kussmaul W.G., Labovitz A.J., Lindenfeld J., Masoudi F.A., Mayo P.H., Porembka D., Spertus J.A., Wann L.S., Wiegers S.E., Brindis R.G., Douglas P.S.,Hendel R.C., Patel M.R., Peterson E.D., Wolk M.J., Allen J.M.Accf/ase/acep/aha/asnc/scai/scct/scmr 2008 appropriateness criteria for stress echocardiography: A report of the american college of cardiology foundation appropriateness criteria task force, american society of echocardiography, american college of emergency physicians, american heart association, american society of nuclear cardiology, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, and society for cardiovascular magnetic resonance endorsed by the heart rhythm society and the society of critical care medicine. Journal of the American College of Cardiology, 51: 1127–1147, 2008.
33. Sicari R., Nihoyannopoulos P., Evangelista A., Kasprzak J., Lancellotti P., Poldermans D., Voigt J.U., Zamorano J.L. Stress echocardiography expert consensus statement: European association of echocardiography (eae) (a registered branch of the esc). European Journal of echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 9: 415–437, 2008.
34. Van de Werf F., Bax J., Betriu A., Blomstrom-Lundqvist C., Crea F., Falk V., Filippatos G., Fox K., Huber K., Kastrati A., Rosengren A., Steg P.G., Tubaro M., Verheugt F., Weidinger F., Weis M. Management of acute myocardial infarction in patients presenting with persistent st-segment elevation: The task force on the management of st-segment elevation acute myocardial infarction of the European society of cardiology. European Heart Journal, 29: 2909–2945, 2008.
35. Hamm C.W., Bassand J.P., Agewall S., Bax J., Boersma E., Bueno H., Caso P., Dudek D., Gielen S., Huber K., Ohman M., Petrie M.C., Sonntag F., Uva M.S., Storey R.F., Wijns W., Zahger D., Bax J.J., Auricchio A., Baumgartner H., Ceconi C., Dean V., Deaton C., Fagard R., Funck-Brentano C., Hasdai D., Hoes A., Knuuti J., Kolh P., McDonagh T., Moulin C., Poldermans D., Popescu B.A., Reiner Z., Sechtem U., Sirnes P.A., Torbicki A., Vahanian A., Windecker S., Windecker S., Achenbach S., Badimon L., Bertrand M., Botker H.E., Collet J.P., Crea F., Danchin N., Falk E., Goudevenos J., Gulba D., Hambrecht R., Herrmann J., Kastrati A., Kjeldsen K., Kristensen S.D., Lancellotti P., Mehilli J., Merkely B., Montalescot G., Neumann F.J., Neyses L., Perk J., Roffi M., Romeo F., Ruda M., Swahn E., Valgimigli M., Vrints C.J., Widimsky P. Esc guidelines for the management of acute coronary syndromes in patients presenting without persistent st-segment elevation: The task force for the management of acute coronary syndromes (acs) in patients presenting without persistent st-segment elevation of the european society of cardiology (esc). European Heart Journal, 32: 2999–3054, 2011.
36. Arnold J.R., Karamitsos T.D., Pegg T.J., Francis J.M., Olszewski R., Searle N., Senior R., Neubauer S., Becher H., Selvanayagam J.B. Adenosine stress myocardial contrast echocardiography for the detection of coronary artery disease: A comparison with coronary angiography and cardiac magnetic resonance. JACC. Cardiovascular imaging, 3: 934–943, 2010.
37. Picano E. Stress echocardiography: A historical perspective. The American Journal of Medicine, 114: 126–130, 2003.
38. McLean D.S., Anadiotis A.V., Lerakis S. Role of echocardiography in the assessment of myocardial viability. The American Journal of the Medical Sciences, 337: 349–354, 2009.
39. Olszewski R., Płońska E., Marciniak W., Adamus J. Echokardiograficzna ocean żywotności mięśnia sercowego. Lek. Wojsk., 76: 193–195, 2000.
40. Dickstein K., Vardas PE, Auricchio A., Daubert JC, Linde C., McMurray J., Ponikowski P., Priori SG, Sutton R., van Veldhuisen DJ, Vahanian A., Auricchio A., Bax J., Ceconi C., Dean V., Filippatos G., Funck-Brentano C., Hobbs R., Kearney P., McDonagh T., Popescu B.A., Reiner Z., Sechtem U., Sirnes P.A., Tendera M., Vardas P., Widimsky P., Tendera M., Anker S.D., Blanc J.J., Gasparini M., Hoes A.W., Israel C,W„ Kalarus Z., Merkely B., Swedberg K., Camm A.J. 2010 focused update of esc guidelines on device therapy in heart failure: An update of the 2008 esc guidelines for the diagnosis and treatment of acute and chronic heart failure and the 2007 esc guidelines for cardiac and resynchronization therapy. Developed with the special contribution of the heart failure association and the european heart rhythm association. European Heart Journal, 31: 2677–2687, 2010.
41. Vardas P.E., Auricchio A., Blanc J.J., Daubert J.C., Drexler H., Ector H., Gasparini M., Linde C., Morgado F.B., Oto A., Sutton R., Trusz-Gluza M. Guidelines for cardiac pacing and cardiac resynchronization therapy: The task force for cardiac pacing and cardiac resynchronization therapy of the european society of cardiology. Developed in collaboration with the european heart rhythm association. European Heart Journal, 28: 2256–2295, 2007.
42. Hunt S.A., Abraham W.T., Chin M.H., Feldman A.M., Francis G.S., Ganiats T.G., Jessup M., Konstam M.A., Mancini D.M, Michl K., Oates J.A., Rahko P.S, Silver M.A., Stevenson L.W., Yancy C.W. 2009 focused update incorporated into the acc/aha 2005 guidelines for the diagnosis and management of heart failure in adults: A report of the american college of cardiology foundation/american heart association task force on practice guidelines: Developed in collaboration with the international society for heart and lung transplantation. Circulation, 119: e391–479, 2009.
43. Di Bello V., Giorgi D., Talini E., Dell’Omo G., Palagi C., Romano M,F„ Pedrinelli R., Mariani M. Incremental value of ultrasonic tissue characterization (backscatter) in the evaluation of left ventricular myocardial structure and mechanics in essential arterial hypertension. Circulation, 107: 74–80, 2003.
44. Bijnens B., D’Hooge J., Sutherland G., Herregods M.C., Nuyts J., Suetens P., Van de Werf F. Robustness of integrated backscatter for myocardial tissue characterization. Ultrasound in Medicine & Biology, 25: 95–103, 1999.
45. Mottram P.M., Haluska B., Leano R., Cowley D., Stowasser M., Marwick T.H. Effect of aldosterone antagonism on myocardial dysfunction in hypertensive patients with diastolic heart failure. Circulation, 110: 558–565, 2004.
46. Miller J.G., Sobel B.E. Cardiac ultrasonic tissue characterization. Hosp. Pract. (Off Ed) 17: 143–51, 1982.
47. Perez J.E., Miller J.G., Wickline S.A., Holland M.R., Waggoner A.D., Barzilai B., Sobel B.E. Quantitative ultrasonic imaging: Tissue characterization and instantaneous quantification of cardiac function. The American Journal of Cardiology, 69: 104H–111H, 1992.
48. Gorcsan J., 3rd, Abraham T., Agler D.A., Bax J.J., Derumeaux G., Grimm R.A., Martin R., Steinberg J.S., Sutton M.S., Yu C.M. Echocardiography for cardiac resynchronization therapy: Recommendations for performance and reporting – a report from the american society of echocardiography dyssynchrony writing group endorsed by the heart rhythm society. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 21: 191–213, 2008.
49. Bax J.J., Van der Wall E.E., Schalij M.J. Cardiac resynchronization therapy for heart failure. The New England Journal of Medicine, 347: 1803–1804, 2002; author reply 1803–1804.
50. Bradley D.J., Bradley E.A., Baughman K.L., Berger R.D., Calkins H., Goodman S.N., Kass D.A., Powe N.R. Cardiac resynchronization and death from progressive heart failure: A meta-analysis of randomized controlled trials. JAMA: the Journal of the American Medical Association, 289: 730–740, 2003.
51. Jaochim Nesser H., Sugeng L., Corsi C., Weinert L., Niel J., Ebner C., SteringerMascherbauer R., Schmidt F., Schummers G., Lang R.M., Mor-Avi V. Volumetric analysis of regional left ventricular function with real-time three-dimensional echocardiography: Validation by magnetic resonance and clinical utility testing. Heart, 93: 572–578, 2007.
52. Kwong J.S., Sanderson J.E., Yu C.M. Cardiac contractility modulation for heart failure: A meta-analysis of randomized controlled trials. Pacing and Clinical Electrophysiology: PACE, 2012.
53. Wang H., Shuraih M., Ahmad M. Real time three-dimensional echocardiography in assessment of left ventricular dyssynchrony and cardiac resynchronization therapy. Echocardiography, 29: 192–199, 2012.
54. Miyatake K., Yamagishi M., Tanaka N., Uematsu M., Yamazaki N., Mine Y., Sano A., Hirama M. New method for evaluating left ventricular wall motion by colorcoded tissue doppler imaging: In vitro and in vivo studies. Journal of the American College of Cardiology, 25: 717–724, 1995.
55. Yu C.M., Chau E., Sanderson J.E., Fan K., Tang M.O., Fung W.H., Lin H., Kong S.L., Lam Y.M., Hill M.R., Lau C.P. Tissue doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation, 105: 438–445, 2002.
56. Bader H., Garrigue S., Lafitte S., Reuter S., Jais P., Haissaguerre M., Bonnet J., Clementy J., Roudaut R. Intra-left ventricular electromechanical asynchrony. A new independent predictor of severe cardiac events in heart failure patients. Journal of the American College of Cardiology, 43: 248–256, 2004.
57. Sogaard P., Egeblad H., Kim W.Y., Jensen H.K., Pedersen A.K., Kristensen B.O., Mortensen P.T. Tissue doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. Journal of the American College of Cardiology, 40: 723–730, 2002.
58. Chung E.S., Leon A.R., Tavazzi L., Sun J.P., Nihoyannopoulos P., Merlino J., Abraham W.T., Ghio S., Leclercq C., Bax J.J., Yu C.M., Gorcsan J., 3rd, St John Sutton M., De Sutter J., Murillo J. Results of the predictors of response to crt (prospect) trial. Circulation, 117: 2608–2616, 2008.
59. McMurray J.J., Adamopoulos S., Anker S.D., Auricchio A., Bohm M., Dickstein K., Falk V., Filippatos G., Fonseca C., Gomez-Sanchez MA., Jaarsma T., Kober L., Lip G.Y., Maggioni A.P., Parkhomenko A., Pieske B.M., Popescu B.A., Ronnevik P.K., Rutten F.H., Schwitter J., Seferovic P., Stepinska J., Trindade P.T., Voors A.A., Zannad F., Zeiher A., Bax J.J., Baumgartner H., Ceconi C., Dean V., Deaton C., Fagard R., Funck-Brentano C., Hasdai D., Hoes A., Kirchhof P., Knuuti J., Kolh P., McDonagh T., Moulin C., Popescu B.A., Reiner Z., Sechtem U., Sirnes P.A., Tendera M., Torbicki A., Vahanian A., Windecker S., McDonagh T., Sechtem U., Bonet LA., Avraamides P., Ben Lamin H.A., Brignole M., Coca A., Cowburn P., Dargie H., Elliott P., Flachskampf F.A., Guida G.F., Hardman S., Iung B., Merkely B., Mueller C., Nanas J.N., Nielsen O.W., Orn S., Parissis J.T., Ponikowski P. Esc guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. Developed in collaboration with the heart failure association (hfa) of the esc. European Heart Journal, 33: 1787–1847, 2012.
60. Lumens J., Leenders G.E., Cramer M.J., De Boeck B.W., Doevendans P.A., Prinzen F.W., Delhaas T. Mechanistic evaluation of echocardiographic dyssynchrony indices: Patient data combined with multiscale computer simulations. Circulation. Cardiovascular Imaging, 5: 491–499, 2012.
61. Pennell D.J. Cardiovascular magnetic resonance. Circulation, 121: 692–705, 2010.
62. Stolzmann P., Subramanian S., Abdelbaky A., Maurovich-Horvat P., Scheffel H., Tawakol A., Hoffmann U. Complementary value of cardiac fdg pet and ct for the characterization of atherosclerotic disease. Radiographics: a review publication of the Radiological Society of North America, Inc, 31: 1255–1269, 2011.
63. Achenbach S., Barkhausen J., Beer M., Beerbaum P., Dill T., Eichhorn J., Fratz S., Gutberlet M., Hoffmann M., Huber A., Hunold P., Klein C., Krombach G., Kreitner K.F., Kuhne T., Lotz J., Maintz D., Mahrholdt H., Merkle N., Messroghli D., Miller S., Paetsch I., Radke P., Steen H., Thiele H., Sarikouch S., Fischbach R. [consensus recommendations of the german radiology society (drg), the german cardiac society (dgk) and the german society for pediatric cardiology (dgpk) on the use of cardiac imaging with computed tomography and magnetic resonance imaging]. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin, 184: 345–368, 2012.
64. Abraham J., Abraham T.P. The role of echocardiography in hemodynamic assessment in heart failure. Heart Failure Clinics, 5: 191–208, 2009.
65. Wang J., Nagueh S.F. Echocardiographic assessment of left ventricular filling pressures. Heart Failure Clinics, 4: 57–70, 2008.
66. Otto C.M. The practice of clinical echocardiography. W.B. Saunders Company, 1997.
67. Lang R.M., Bierig M., Devereux R.B., Flachskampf F.A., Foster E., Pellikka P.A., Picard M.H., Roman M.J., Seward J., Shanewise J.S., Solomon S.D., Spencer K.T., Sutton M.S., Stewart W.J. Recommendations for chamber quantification: A report from the american society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the european association of echocardiography, a branch of the european society of cardiology. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 18: 1440–1463, 2005.
68. Olszewski R., Timperley J., Szmigielski C., Monaghan M., Nihoyannopoulos P., Senior R., Becher H. The clinical applications of contrast echocardiography. European Journal of echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 8: S13–23, 2007.
69. Olszewski R., Marciniak W., Nowicki A., Gil M., Etienne J., Karlowicz P., Adamus J. The improvement of echocardiographic assessment of the left ventricle by the use of perflenapent and harmonic imaging. Pol. Merkur. Lekarski, 5: 132–134, 1998.
70. Cheitlin M.D., Alpert J.S., Armstrong W.F., Aurigemma G.P., Beller G.A., Bierman F.Z., Davidson T.W., Davis J.L., Douglas P.S., Gillam L.D. Acc/aha guidelines for the clinical application of echocardiography. A report of the american college of cardiology/american heart association task force on practice guidelines (committee on clinical application of echocardiography). Developed in collaboration with the american society of echocardiography. Circulation, 95: 1686–1744, 1997.
71. Nowicki A., Olszewski R. Contrast agents in echocardiography. Pol. Merkur. Lekarski, 7: 78–81, 1999.
72. Olszewski R., Becher H. Contrast echocardiography. Current indications. Asian Hosp. Healthcare Manag., 18: 23–27, 2009.
73. Senior R., Becher H., Monaghan M., Agati L., Zamorano J., Vanoverschelde J.L., Nihoyannopoulos P. Contrast echocardiography: Evidence-based recommendations by european association of echocardiography. European Journal of echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 10: 194–212, 2009.
74. Soliman O.I., De Jong N., Van Der Zwaan H.B., Galema T.W., Vletter W.B., Van Dalen B.M., Schinkel A.F., Ten Cate F.J., Geleijnse M.L. Contrast echocardiography: Mechanism of action, safety and clinical applications. Minerva Cardioangiologica, 58: 343–355, 2010.
75. Teichholz L.E., Kreulen T., Herman M.V., Gorlin R. Problems in echocardiographic volume determinations: Echocardiographic-angiographic correlations in the presence of absence of asynergy. The American Journal of Cardiology, 37: 7–11, 1976.
76. Pombo J.F., Troy B.L., Russell R.O., Jr. Left ventricular volumes and ejection fraction by echocardiography. Circulation, 43: 480–490, 1971.
77. Bellenger N.G., Burgess M.I., Ray S.G., Lahiri A., Coats A.J., Cleland J.G., Pennell D.J. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? European Heart Journal, 21: 1387–1396, 2000.
78. Qin J.X., Jones M., Shiota T., Greenberg N.L., Tsujino H., Firstenberg M.S., Gupta P.C., Zetts A.D., Xu Y., Ping Sun J., Cardon L.A., Odabashian J.A., Flamm S.D., White R.D., Panza J.A., Thomas J.D. Validation of real-time threedimensional echocardiography for quantifying left ventricular volumes in the presence of a left ventricular aneurysm: In vitro and in vivo studies. Journal of the American College of Cardiology, 36: 900–907, 2000.
79. Kuhl H.P., Schreckenberg M., Rulands D., Katoh M., Schafer W., Schummers G., Bucker A., Hanrath P., Franke A. High-resolution transthoracic real-time threedimensional echocardiography: Quantitation of cardiac volumes and function using semi-automatic border detection and comparison with cardiac magnetic resonance imaging. Journal of the American College of Cardiology, 43: 2083–2090, 2004.
80. Matsumura Y., Hozumi T., Arai K., Sugioka K., Ujino K., Takemoto Y., Yamagishi H., Yoshiyama M., Yoshikawa J. Non-invasive assessment of myocardial ischaemia using new real-time three-dimensional dobutamine stress echocardiography: Comparison with conventional two-dimensional methods. European Heart Journal, 26: 1625–1632, 2005.
81. Lang R.M., Badano L.P., Tsang W., Adams D.H., Agricola E., Buck T., Faletra F.F., Franke A., Hung J., de Isla L.P., Kamp O., Kasprzak J.D., Lancellotti P., Marwick T.H., McCulloch M.L., Monaghan M.J., Nihoyannopoulos P., Pandian N.G., Pellikka P.A., Pepi M., Roberson D.A., Shernan S.K., Shirali G.S., Sugeng L., Ten Cate F.J., Vannan M.A., Zamorano J.L., Zoghbi W.A. Eae/ase recommendations for image acquisition and display using three-dimensional echocardiography. European Heart Journal Cardiovascular Imaging, 13: 1–46, 2012.
82. Hoffmann R., Lethen H., Marwick T., Arnese M., Fioretti P., Pingitore A., Picano E., Buck T., Erbel R., Flachskampf F.A., Hanrath P. Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J. Am. Coll. Cardiol., 27: 330–336, 1996.
83. Marwick T.H. When Is a Number Not a Number? Quality Control Arrives in the Imaging Laboratory. JACC – Cardiovascular Imaging, 4 (8): 830–832, 2011.
84. Otterstad J.E., Froeland G., St John Sutton M., Holme I. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. European Heart Journal, 18: 507–513, 1997.
85. Picano E., Lattanzi F., Orlandini A., Marini C., L’Abbate A. Stress echocardiography and the human factor: The importance of being expert. Journal of the American College of Cardiology, 17: 666–669, 1991.
86. Grines C.L., Bashore T.M., Boudoulas H., Olson S., Shafer P., Wooley C.F. Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation, 79: 845–853, 1989.
87. Geleijnse M.L., Vigna C., Kasprzak J.D., Rambaldi R., Salvatori M.P., Elhendy A., Cornel J.H., Fioretti P.M., Roelandt J.R. Usefulness and limitations of dobutamine-atropine stress echocardiography for the diagnosis of coronary artery disease in patients with left bundle branch block. A multicentre study. European Heart Journal, 21: 1666–1673, 2000.
88. Perk G., Tunick P.A., Kronzon I. Non-doppler two-dimensional strain imaging by echocardiography – from technical considerations to clinical applications. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 20: 234–243, 2007.
89. Hansen D.E., Daughters G.T., 2nd, Alderman E.L., Ingels N.B., Jr., Miller D.C. Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers: Regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circulation Research, 62: 941–952, 1988.
90. Sengupta P.P., Tajik A.J., Chandrasekaran K., Khandheria B.K. Twist mechanics of the left ventricle: Principles and application. JACC. Cardiovascular Imaging, 1: 366–376, 2008.
91. Sengupta P.P., Khandheria B.K., Narula J. Twist and untwist mechanics of the left ventricle. Heart Failure Clinics, 4: 315–324, 2008.
92. Jensen-Urstad K., Bouvier F., Hojer J., Ruiz H., Hulting J., Samad B., Thorstrand C., Jensen-Urstad M. Comparison of different echocardiographic methods with radionuclide imaging for measuring left ventricular ejection fraction during acute myocardial infarction treated by thrombolytic therapy. The American Journal of Cardiology, 81: 538–544, 1998.
93. Jenkins C., Moir S., Chan J., Rakhit D., Haluska B., Marwick T.H. Left ventricular volume measurement with echocardiography: A comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. European Heart Journal, 30: 98–106, 2009.
94. Chukwu E.O., Barasch E., Mihalatos D.G., Katz A., Lachmann J., Han J., Reichek N., Gopal A.S. Relative importance of errors in left ventricular quantitation by two-dimensional echocardiography: Insights from three-dimensional echocardiography and cardiac magnetic resonance imaging. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 21: 990–997, 2008.
95. Gutierrez-Chico J.L., Zamorano J.L., Perez de Isla L., Orejas M., Almeria C., Rodrigo J.L., Ferreiros J., Serra V., Macaya C. Comparison of left ventricular volumes and ejection fractions measured by three-dimensional echocardiography versus by two-dimensional echocardiography and cardiac magnetic resonance in patients with various cardiomyopathies. The American Journal of Cardiology, 95: 809–813, 2005.
96. Waldman L.K., Fung Y.C., Covell J.W. Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ. Res., 57: 152–163, 1985.
97. Kvitting J.P., Wigstrom L., Strotmann J.M., Sutherland GR. How accurate is visual assessment of synchronicity in myocardial motion? An in vitro study with computer-simulated regional delay in myocardial motion: Clinical implications for rest and stress echocardiography studies. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 12: 698–705, 1999.
98. Villarreal F.J., Lew W.Y., Waldman L.K., Covell J.W. Transmural myocardial deformation in the ischemic canine left ventricle. Circulation Research, 68: 368–381, 1991.
99. Lang R.M., Vignon P., Weinert L., Bednarz J., Korcarz C., Sandelski J., Koch R., Prater D., Mor-Avi V. Echocardiographic quantification of regional left ventricular wall motion with color kinesis. Circulation, 93: 1877–1885, 1996.
100. Schwartz S.L., Cao Q.L., Vannan M.A., Pandian N.G. Automatic backscatter analysis of regional left ventricular systolic function using color kinesis. The American Journal of Cardiology, 77: 1345–1350, 1996.
101. Vandenberg B.F., Oren R.M., Lewis J., Aeschilman S., Burns T.L., Kerber R.E. Evaluation of color kinesis, a new echocardiographic method for analyzing regional wall motion in patients with dilated left ventricles. The American Journal of Cardiology, 79: 645–650, 1997.
102. Mor-Avi V.V., Godoy I.E., Lang R.M. Color kinesis: New technique or just another display of acoustic quantification? Echocardiography, 16: 95–103, 1999.
103. Koch R., Lang R.M., Garcia M.J., Weinert L., Bednarz J., Korcarz C., Coughlan B., Spiegel A., Kaji E., Spencer K.T., Mor-Avi V. Objective evaluation of regional left ventricular wall motion during dobutamine stress echocardiographic studies using segmental analysis of color kinesis images. Journal of the American College of Cardiology, 34: 409–419, 1999.
104. Kotoh K., Watanabe G., Ueyama K., Uozaki M., Suzuki M., Misaki T., Wakasugi M., Ito Y. On-line assessment of regional ventricular wall motion by transesophageal echocardiography with color kinesis during minimally invasive coronary artery bypass grafting. The Journal of Thoracic and Cardiovascular Surgery, 117: 912–917, 1999.
105. Gillam L.D., Hogan R.D., Foale R.A., Franklin T.D., Jr., Newell J.B., Guyer D.E., Weyman A.E. A comparison of quantitative echocardiographic methods for delineating infarct-induced abnormal wall motion. Circulation, 70: 113–122, 1984.
106. Leischik R., Bartel T., Mohlenkamp S., Bruch C., Buck T., Haude M., Gorge G., Erbel R. Stress echocardiography: New techniques. European Heart Journal, 18 Suppl D: D49–56, 1997.
107. Godoy I.E., Mor-Avi V., Spencer K.T., Lang R.M. Objective echocardiographic evaluation of the cardiovascular system: State of the art. Current Opinion in Cardiology, 12: 553–560, 1997.
108. Bednarz J.E., Marcus R.H., Lang R.M. Technical guidelines for performing automated border detection studies. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 8: 293–305, 1995.
109. Waggoner A.D., Miller J.G., Perez J.E. Two-dimensional echocardiographic automatic boundary detection for evaluation of left ventricular function in unselected adult patients. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 7: 459–464, 1994.
110. Voigt J.U., von Bibra H., Daniel W.G. New techniques for the quantification of myocardial function: Acoustic quantification, color kinesis, tissue doppler and ”strain rate imaging”. Zeitschrift fur Kardiologie, 89 Suppl 1: 97–103, 2000.
111. Axel L., Dougherty L. Mr imaging of motion with spatial modulation of magnetization. Radiology, 171: 841–845, 1989.
112. Zerhouni E.A., Parish D.M., Rogers W.J., Yang A., Shapiro E.P. Human heart: Tagging with mr imaging – a method for noninvasive assessment of myocardial motion. Radiology, 169: 59–63, 1988.
113. Hundley W.G., Bluemke D.A., Finn J.P., Flamm S.D., Fogel M.A., Friedrich M.G., Ho V.B., Jerosch-Herold M., Kramer C.M., Manning W.J., Patel M., Pohost G.M., Stillman A.E., White R.D., Woodard P.K. Accf/acr/aha/nasci/scmr 2010 expert consensus document on cardiovascular magnetic resonance: A report of the american college of cardiology foundation task force on expert consensus documents. Circulation, 121: 2462–2508, 2010.
114. http://europa.Eu.Int/comm/environment/radprot/118/rp-118-en.pdf (28 july 2007). Radiat. Prot., 118: 1–125, 2001.
115. Einstein A.J., Moser K.W., Thompson R.C., Cerqueira M.D., Henzlova M.J. Radiation dose to patients from cardiac diagnostic imaging. Circulation, 116: 1290–1305, 2007.
116. Koshy S., Thompson R.C. Review of radiation reduction strategies in clinical cardiovascular imaging. Cardiology in Review, 20: 139–144, 2012.
117. Einstein A.J. Effects of radiation exposure from cardiac imaging: How good are the data? Journal of the American College of Cardiology, 59: 553–565, 2012.
118. Doppler C.A. Ü ber das farbige licht der doppelsterne und einiger anderer gestirne des himmels. Abhandlungen der königl. Böhm. Gesellschaft der wissenschaften (1843): 465–482.
119. Edvardsen T., Gerber B.L., Garot J., Bluemke D.A., Lima J.A., Smiseth O.A. Quantitative assessment of intrinsic regional myocardial deformation by doppler strain rate echocardiography in humans: Validation against three-dimensional tagged magnetic resonance imaging. Circulation, 106: 50–56, 2002.
120. Edvardsen T., Skulstad H., Aakhus S., Urheim S., Ihlen H. Regional myocardial systolic function during acute myocardial ischemia assessed by strain doppler echocardiography. J. Am. Coll. Cardiol., 37: 726–730, 2001.
121. Gorcsan J., 3rd, Strum D.P., Mandarino W.A., Gulati V.K., Pinsky M.R. Quantitative assessment of alterations in regional left ventricular contractility with color-coded tissue doppler echocardiography. Comparison with sonomicrometry and pressure-volume relations. Circulation, 95: 2423–2433, 1997.
122. Greenberg N.L., Firstenberg M.S., Castro P.L., Main M., Travaglini A., Odabashian J.A., Drinko J.K., Rodriguez L.L., Thomas J.D., Garcia M.J. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility. Circulation, 105: 99–105, 2002.
123. Pellerin D., Sharma R., Elliott P., Veyrat C. Tissue doppler, strain, and strain rate echocardiography for the assessment of left and right systolic ventricular function. Heart, 89 Suppl 3: iii9–17, 2003.
124. Isaaz K., Thompson A., Ethevenot G., Cloez JL, Brembilla B., Pernot C. Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall. Am. J. Cardiol., 64: 66–75, 1989.
125. McDicken W.N., Sutherland G.R., Moran C.M., Gordon L.N. Colour doppler velocity imaging of the myocardium. Ultrasound in Medicine & Biology, 18: 651–654, 1992.
126. Sutherland G.R., Stewart M.J., Groundstroem K.W., Moran C.M., Fleming A., Guell-Peris F.J., Riemersma R.A., Fenn L.N, Fox K.A., McDicken W.N. Color doppler myocardial imaging: A new technique for the assessment of myocardial function. J. Am. Soc. Echocardiogr., 7: 441–458, 1994.
127. Fleming A.D., McDicken W.N., Sutherland G.R., Hoskins P.R. Assessment of colour doppler tissue imaging using test-phantoms. Ultrasound Med. Biol., 20: 937–951, 1994.
128. Heimdal A., Stoylen A., Torp H., Skjaerpe T. Real-time strain rate imaging of the left ventricle by ultrasound. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 11: 1013–1019, 1998.
129. Lange A., Palka P., Nowicki A., Olszewski R., Anderson T., Adamus J., Sutherland G.R., Fox K.A. Three-dimensional echocardiographic evaluation of left ventricular volume: Comparison of doppler myocardial imaging and standard gray-scale imaging with cineventriculography – an in vitro and in vivo study. Am. Heart. J., 135: 970–979, 1998.
130. Kowalski M., Kukulski T., Jamal F., D’Hooge J., Weidemann F., Rademakers F., Bijnens B., Hatle L., Sutherland G.R. Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects. Ultrasound Med. Biol., 27: 1087–1097, 2001.
131. Kukulski T., Jamal F., D’Hooge J., Bijnens B., De Scheerder I., Sutherland G.R. Acute changes in systolic and diastolic events during clinical coronary angioplasty: A comparison of regional velocity, strain rate, and strain measurement. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 15: 1–12, 2002.
132. Nowicki A., Olszewski R., Etienne J., Karlowicz P., Adamus J. Assessment of wall velocity gradient imaging using a test phantom. Ultrasound Med. Biol., 22: 1255–1260, 1996.
133. Palka P., Lange A., Fleming A.D., Sutherland G.R., Fenn L.N., McDicken W.N. Doppler tissue imaging: Myocardial wall motion velocities in normal subjects. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 8: 659–668, 1995.
134. Erbel R.N., Dozdz J. Atlas of tissue doppler echocardiography. Steinkopf Verlag, 1995.
135. Donal E., Thebault C., Lund L.H., Kervio G., Reynaud A., Simon T., Drouet E., Nonotte E., Linde C., Daubert J.-C., Heart failure with a preserved ejection fraction additive value of an exercise stress echocardiography. Eur. Heart J. Cardiovasc. Imaging., 13 (8): 656–665, 2012.
136. Dickstein K., Cohen-Solal A., Filippatos G., McMurray J.J., Ponikowski P., PooleWilson P.A., Stromberg A., van Veldhuisen D.J., Atar D., Hoes A.W., Keren A., Mebazaa A., Nieminen M., Priori S.G., Swedberg K. Esc guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European society of cardiology. Developed in collaboration with the heart failure association of the esc (hfa) and endorsed by the european society of intensive care medicine (esicm). European Heart Journal, 29: 2388–2442, 2008.
137. Nagueh S.F., Appleton C.P., Gillebert T.C., Marino P.N., Oh J.K., Smiseth O.A., Waggoner A.D., Flachskampf F.A., Pellikka P.A., Evangelisa A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. European Journal of echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 10: 165–193, 2009.
138. Nagueh S.F., Middleton K.J., Kopelen H.A., Zoghbi W.A., Quinones M.A. Doppler tissue imaging: A noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. Journal of the American College of Cardiology, 30: 1527–1533, 1997.
139. Garcia M.J., Thomas J.D., Klein A.L. New doppler echocardiographic applications for the study of diastolic function. Journal of the American College of Cardiology, 32: 865–875, 1998.
140. D’Hooge J., Bijnens B., Thoen J., Van de Werf F., Sutherland G.R., Suetens P. Echocardiographic strain and strain-rate imaging: A new tool to study regional myocardial function. IEEE Trans. Med. Imaging, 21: 1022–1030, 2002.
141. Kasai C., Harada A. Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans. Biomed. Eng., SU-32: 458–464, 1985.
142. Kowalski M. Pomiar wielkości i tempa regionalnego odkształcenia mięśnia serca (strain/strain rate imaging) – nowe perspektywy echokardiografii. Rozprawa habilitacyjna. Instytut Kardiologii, Warszawa, 2004.
143. Yoshida T., Mori M., Nimura Y., Hikita G., Taka Gishi S., Nakanishi K., Satomura S. Analysis of heart motion with ultrasonic doppler method and its clinical application. American Heart Journal, 61: 61–75, 1961.
144. Sutherland G.R.H., Claus L., D’Hooge P., Bijnens J., Hasselt B.H. Doppler myocardial imaging – a textbook. Hasselt Belgium: BSWK; 2006.
145. Cardim N. Tissue doppler imaging. Revista portuguesa de cardiologia: orgao oficial da Sociedade Portuguesa de Cardiologia – Portuguese Journal of Cardiology: an official journal of the Portuguese Society of Cardiology, 17 Suppl 3: III65–68, 1998.
146. Trambaiolo P., Tonti G., Salustri A., Fedele F., Sutherland G. New insights into regional systolic and diastolic left ventricular function with tissue doppler echocardiography: From qualitative analysis to a quantitative approach. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 14: 85–96, 2001.
147. Price D.J., Wallbridge D.R., Stewart M.J. Tissue doppler imaging: Current and potential clinical applications. Heart, 84 Suppl 2: II11–18, 2000.
148. Kukulski T. Ilościowa analiza zmian regionalnej funkcji mięśnia sercowego wywołanych ostrym niedokrwieniem. Ocena eksperymentalna i kliniczna za pomocą wybranych parametrów dopplera miokardialnego. Rozprawa habilitacyjna. Śląska Akademia Medyczna w Katowicach, 2002.
149. Ruan Q., Rao L., Middleton K.J., Khoury D.S., Nagueh S.F. Assessment of left ventricular diastolic function by early diastolic mitral annulus peak acceleration rate: Experimental studies and clinical application. J. Appl. Physiol., 100: 679–684, 2006.
150. Garcia-Fernandez J., Azevedo J. Doppler tissue imaging echocardiography. McGrawHill, Madrid, Spain 1997.
151. Kukulski T., Voigt J.U, Wilkenshoff U.M., Strotmann J.M., Wranne B., Hatle L., Sutherland G.R. A comparison of regional myocardial velocity information derived by pulsed and color doppler techniques: An in vitro and in vivo study. Echocardiography, 17: 639–651, 2000.
152. McCulloch M., Zoghbi W.A., Davis R., Thomas C., Dokainish H. Color tissue doppler myocardial velocities consistently underestimate spectral tissue Doppler velocities: Impact on calculation peak transmitral pulsed doppler velocity/early diastolic tissue doppler velocity (e/ea). J. Am. Soc. Echocardiogr., 19: 744–748, 2006.
153. Oki T., Tabata T., Yamada H., Wakatsuki T., Shinohara H., Nishikado A., Iuchi A., Fukuda N., Ito S. Clinical application of pulsed doppler tissue imaging for assessing abnormal left ventricular relaxation. The American Journal of Cardiology, 79: 921–928, 1997.
154. Ommen S.R., Nishimura R.A., Appleton C.P., Miller F.A., Oh J.K., Redfield M.M., Tajik A.J. Clinical utility of doppler echocardiography and tissue doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous doppler-catheterization study. Circulation, 102: 1788–1794, 2000.
155. SohnD.W., Chai I.H., LeeD.J.,Kim H.C.,Kim H.S.,Oh B.H., LeeM.M., Park Y.B., Choi Y.S., Seo J.D., Lee Y.W. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. Journal of the American College of Cardiology, 30: 474–480, 1997.
156. Alam M., Wardell J., Andersson E., Samad B.A., Nordlander R. Characteristics of mitral and tricuspid annular velocities determined by pulsed wave doppler tissue imaging in healthy subjects. J. Am. Soc. Echocardiogr., 12: 618–628, 1999.
157. Henein M., Francis D., Mörner S., Waldenström A., Kazzam E. Tissue Doppler analysis of age-dependency in diastolic ventricular behaviour and filling: A crosssectional study of healthy hearts (the umeĺ general population heart study). Eur. Heart J., 23: 162–171, 2002.
158. Nikitin N.P., Witte K.K., Thackray S.D., de Silva R., Clark A.L., Cleland J.G. Longitudinal ventricular function: Normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color Doppler tissue imaging. J. Am. Soc. Echocardiogr., 16: 906–921, 2003.
159. Donovan C.L., Armstrong W.F., Bach D.S. Quantitative doppler tissue imaging of the left ventricular myocardium: Validation in normal subjects. Am. Heart J., 130: 100–104, 1995.
160. De Sutter J., De Backer J., Van de Veire N., Velghe A., De Buyzere M., Gillebert TC. Effects of age, gender, and left ventricular mass on septal mitral annulus velocity (e’) and the ratio of transmitral early peak velocity to e’ (e/e’). The American Journal of Cardiology, 95: 1020–1023, 2005.
161. Nikitin N.P., Witte K.K. Application of tissue doppler imaging in cardiology. Cardiology, 101: 170–184, 2004.
162. Mishiro Y., Oki T., Yamada H., Wakatsuki T., Ito S. Evaluation of left ventricular contraction abnormalities in patients with dilated cardiomyopathy with the use of pulsed tissue doppler imaging. J. Am. Soc. Echocardiogr., 12: 913–920, 1999.
163. Eder V., Marchal C., Tranquart F., Sirinelli A., Pottier J.M., Cosnay P. Localization of the ventricular preexcitation site in wolff-parkinson-white syndrome with Doppler tissue imaging. J. Am. Soc. Echocardiogr., 13: 995–1001, 2000.
164. Chetboul V. Doppler myocardial tissue imaging: A new promising echocardiographic technique]. Schweizer Archiv. fur Tierheilkunde, 145: 416–423, 2003.
165. Rushmer R.F., Crystal D.K., Wagner C. The functional anatomy of ventricular contraction. Circulation Research, 1: 162–170, 1953.
166. Isaaz K. What are we actually measuring by doppler tissue imaging? Journal of the American College of Cardiology, 36: 897–899, 2000.
167. Sengupta P.P., Mohan J.C., Pandian N.G. Tissue doppler echocardiography: Principles and applications. Indian Heart Journal, 54: 368–378, 2002.
168. Gulati V.K., Katz W.E., Follansbee W.P., Gorcsan J., 3rd. Mitral annular descent velocity by tissue doppler echocardiography as an index of global left ventricular function. Am. J. Cardiol., 77: 979–984, 1996.
169. Nagueh S.F., Sun H., Kopelen H.A., Middleton K.J., Khoury D.S. Hemodynamic determinants of the mitral annulus diastolic velocities by tissue doppler. Journal of the American College of Cardiology, 37: 278–285, 2001.
170. Hasegawa H., Little W.C., Ohno M., Brucks S., Morimoto A., Cheng H.J., Cheng C.P. Diastolic mitral annular velocity during the development of heart failure. Journal of the American College of Cardiology, 41: 1590–1597, 2003.
171. Caiani E.G., Weinert L., Takeuchi M., Veronesi F., Sugeng L., Corsi C., Capderou A., Cerutti S., Vaida P., Lang R.M. Evaluation of alterations on mitral annulus velocities, strain, and strain rates due to abrupt changes in preload elicited by parabolic flight. J. Appl. Physiol., 103: 80–87, 2007.
172. Yamamoto T., Oki T., Yamada H., Tanaka H., Ishimoto T., Wakatsuki T., Tabata T., Ito S. Prognostic value of the atrial systolic mitral annular motion velocity in patients with left ventricular systolic dysfunction. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 16: 333–339, 2003.
173. Hillis G.S., Moller J.E., Pellikka P.A., Gersh B.J., Wright R.S., Ommen S.R., Reeder G.S., Oh J.K. Noninvasive estimation of left ventricular filling pressure by e/e’ is a powerful predictor of survival after acute myocardial infarction. Journal of the American College of Cardiology, 43: 360–367, 2004.
174. Hillis G.S., Ujino K., Mulvagh S.L., Hagen M.E., Oh J.K. Echocardiographic indices of increased left ventricular filling pressure and dilation after acute myocardial infarction. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 19: 450–456, 2006.
175. Bach D.S., Armstrong W.F., Donovan C.L., Muller D.W. Quantitative Doppler tissue imaging for assessment of regional myocardial velocities during transient ischemia and reperfusion. Am. Heart. J., 132: 721–725, 1996.
176. Bolognesi R., Tsialtas D., Barilli A.L, Manca C., Zeppellini R., Javernaro A., Cucchini F. Detection of early abnormalities of left ventricular function by hemodynamic, echo-tissue doppler imaging, and mitral doppler flow techniques in patients with coronary artery disease and normal ejection fraction. J. Am. Soc. Echocardiogr., 14: 764–772, 2001.
177. Bijnens B., Claus P., Weidemann F., Strotmann J., Sutherland G.R. Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation, 116: 2453–2464, 2007.
178. Edvardsen T., Aakhus S., Endresen K., Bjomerheim R., Smiseth O.A., Ihlen H. Acute regional myocardial ischemia identified by 2-dimensional multiregion tissue doppler imaging technique. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 13: 986–994, 2000.
179. Urheim S., Edvardsen T., Steine K., Skulstad H., Lyseggen E., Rodevand O., Smiseth OA. Postsystolic shortening of ischemic myocardium: A mechanism of abnormal intraventricular filling. American Journal of Physiology. Heart and Circulatory Physiology, 284: H2343–2350, 2003.
180. Weidemann F., Dommke C., Bijnens B., Claus P., D’Hooge J., Mertens P., Verbeken E., Maes A., Van de Werf F., De Scheerder I., Sutherland G.R. Defining the transmurality of a chronic myocardial infarction by ultrasonic strain-rate imaging: Implications for identifying intramural viability: An experimental study. Circulation, 107: 883–888, 2003.
181. Derumeaux G., Ovize M., Loufoua J., Andre-Fouet X., Minaire Y., Cribier A., Letac B. Doppler tissue imaging quantitates regional wall motion during myocardial ischemia and reperfusion. Circulation, 97: 1970–1977, 1998.
182. Kukulski T., Jamal F., Herbots L., D’Hooge J., Bijnens B., Hatle L., De Scheerder I., Sutherland G.R. Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. Journal of the American College of Cardiology, 41: 810–819, 2003.
183. Cain P., Khoury V., Short L., Marwick T.H. Usefulness of quantitative echocardiographic techniques to predict recovery of regional and global left ventricular function after acute myocardial infarction. The American Journal of Cardiology, 91: 391–396, 2003.
184. Peteiro J., Bouzas-Mosquera A. Peak treadmill exercise echocardiography. Reviews on Recent Clinical Trials, 5: 94–102, 2010.
185. Katz W.E., Gulati V.K., Mahler C.M., Gorcsan J., 3rd. Quantitative evaluation of the segmental left ventricular response to dobutamine stress by tissue Doppler echocardiography. Am. J. Cardiol., 79: 1036–1042, 1997.
186. Mehra M.R., Greenberg B.H. Cardiac resynchronization therapy: Caveat medicus! J. Am. Coll. Cardiol., 43: 1145–1148, 2004.
187. Heydari B., Jerosch-Herold M., Kwong R.Y. Imaging for planning of cardiac resynchronization therapy. JACC. Cardiovascular Imaging, 5: 93–110, 2012.
188. Ganjehei L., Razavi M., Massumi A. Cardiac resynchronization therapy: A decade of experience and the dilemma of nonresponders. Texas Heart Institute Journal / from the Texas Heart Institute of St. Luke’s Episcopal Hospital, Texas Children’s Hospital, 38: 358–360, 2011.
189. Bax J.J., Bleeker G.B., Marwick T.H., Molhoek S.G., Boersma E., Steendijk P., van der Wall E.E., Schalij M.J. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J. Am. Coll. Cardiol, 44: 1834–1840, 2004.
190. Gorcsan J., 3rd, Kanzaki H., Bazaz R., Dohi K., Schwartzman D. Usefulness of echocardiographic tissue synchronization imaging to predict acute response to cardiac resynchronization therapy. Am. J. Cardiol., 93: 1178–1181, 2004.
191. Yu C.M., Zhang Q., Fung J.W., Chan H.C., Chan Y.S., Yip G.W., Kong S.L., Lin H., Zhang Y., Sanderson J.E. A novel tool to assess systolic asynchrony and identify responders of cardiac resynchronization therapy by tissue synchronization imaging. J. Am. Coll. Cardiol., 45: 677–684, 2005.
192. Colonna P., D’Agostino C., Del Salvatore B., Sorino M. New echocardiographic technologies in the study of acute myocardial infarction. Italian Heart Journal: official journal of the Italian Federation of Cardiology, 5 Suppl 6: 25S–40S, 2004.
193. Citro R., Galderisi M. Myocardial postsystolic motion in ischemic and not ischemic myocardium: The clinical value of tissue doppler. Echocardiography, 22: 525–532, 2005.
194. Iwasaki Y., Satomi G., Yasukochi S. Analysis of ventricular septal motion by doppler tissue imaging in atrial septal defect and normal heart. The American Journal of Cardiology, 83: 206–210, 1999.
195. Brodin L.A. Tissue doppler, a fundamental tool for parametric imaging. Clinical Physiology and Functional Imaging, 24: 147–155, 2004.
196. Van de Veire N.R., De Sutter J., Bax J.J., Roelandt J.R. Technological advances in tissue doppler imaging echocardiography. Heart, 94: 1065–1074, 2008.
197. Urheim S., Edvardsen T., Torp H., Angelsen B., Smiseth O.A. Myocardial strain by doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation, 102: 1158–1164, 2000.
198. Zagrzebski J.A. Doppler implement. Essentials of Ultrasound Physics, 5: 90–91, 1996.
199. Sade L.E., Gorcsan J., 3rd, Severyn D.A., Edelman K., Katz W.E. Usefulness of angle corrected tissue doppler to assess segmental left ventricular function during dobutamine stress echocardiography in patients with and without coronary artery disease. The American Journal of Cardiology, 96: 141–147, 2005.
200. Castro P.L., Greenberg N.L., Drinko J., Garcia M.J., Thomas J.D. Potential pitfalls of strain rate imaging: Angle dependency. Biomedical Sciences Instrumentation, 36: 197–202, 2000.
201. Leitman M., Lysyansky P., Sidenko S., Shir V., Peleg E., Binenbaum M., Kaluski E., Krakover R., Vered Z. Two-dimensional strain – a novel software for real-time quantitative echocardiographic assessment of myocardial function. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 17: 1021–1029, 2004.
202. Chrzanowski L.L., Krzemińska-Pakuła P., Wejner-Milk M., Jasińska P., Drożdż A., Kasprzak J. Echokardiograficzna ocena odkształcenia lewej komory przy zastosowaniu techniki doplera tkankowego oraz śledzenia markerów akustycznych (speckle tracking). Pol. Przegl. Kardiol., 9 (3): 195–202, 2007.
203. Bohs L.N., Trahey G.E. A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Transactions on Bio-Medical Engineering, 38: 280–286, 1991.
204. Helle-Valle T., Crosby J., Edvardsen T., Lyseggen E., Amundsen B.H., Smith H.J., Rosen B.D., Lima J.A., Torp H., Ihlen H., Smiseth O.A. New noninvasive method for assessment of left ventricular rotation: Speckle tracking echocardiography. Circulation, 112: 3149–3156, 2005.
205. Cho G.Y., Chan J., Leano R., Strudwick M., Marwick T.H. Comparison of twodimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. The American Journal of Cardiology, 97: 1661–1666, 2006.
206. Belohlavek M., Bartleson V.B., Zobitz M.E. Real-time strain rate imaging: Validation of peak compression and expansion rates by a tissue-mimicking phantom. Echocardiography, 18: 565–571, 2001.
207. Amundsen B.H., Helle-Valle T., Edvardsen T., Torp H., Crosby J., Lyseggen E., Stoylen A., Ihlen H., Lima J.A., Smiseth O.A., Slordahl S.A. Noninvasive myocardial strain measurement by speckle tracking echocardiography: Validation against sonomicrometry and tagged magnetic resonance imaging. Journal of the American College of Cardiology, 47: 789–793, 2006.
208. Korinek J., Wang J., Sengupta P.P., Miyazaki C., Kjaergaard J., McMahon E., Abraham T.P., Belohlavek M. Two-dimensional strain – a doppler-independent ultrasound method for quantitation of regional deformation: Validation in vitro and in vivo. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 18: 1247–1253, 2005.
209. Korinek J., Kjaergaard J., Sengupta P.P., Yoshifuku S., McMahon E.M., Cha S.S., Khandheria B.K., Belohlavek M. High spatial resolution speckle tracking improves accuracy of 2-dimensional strain measurements: An update on a new method in functional echocardiography. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 20: 165–170, 2007.
210. Geyer H., Caracciolo G., Abe H., Wilansky S., Carerj S., Gentile F., Nesser H.J., Khandheria B., Narula J., Sengupta P.P. Assessment of myocardial mechanics using speckle tracking echocardiography: Fundamentals and clinical applications. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 23: 351–369, 2010; quiz 453–355.
211. Vannan M.A., Pedrizzetti G., Li P., Gurudevan S., Houle H., Main J., Jackson J., Nanda N.C. Effect of cardiac resynchronization therapy on longitudinal and circumferential left ventricular mechanics by velocity vector imaging: Description and initial clinical application of a novel method using high-frame rate b-mode echocardiographic images. Echocardiography, 22: 826–830, 2005.
212. Saito K., Okura H., Watanabe N., Hayashida A., Obase K., Imai K., Maehama T., Kawamoto T., Neishi Y., Yoshida K. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: Comparison of three-dimensional and two-dimensional approaches. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 22: 1025–1030, 2009.
213. Kataoka A., Funabashi N., Yajima R., Takahashi M., Takahashi A., Saito M., Yamaguchi C., Imaeda T., Lee K., Komuro I. Differentiation of pseudodyskinesis of inferior left ventricular wall from inferior myocardial infarction by assessment of regional myocardial strain using two-dimensional speckle tracking echocardiography. International Journal of Cardiology, 152: 362–368, 2011.
214. Ogawa K., Hozumi T., Sugioka K., Matsumura Y., Nishiura M., Kanda R., Abe Y., Takemoto Y., Yoshiyama M., Yoshikawa J. Usefulness of automated quantitation of regional left ventricular wall motion by a novel method of two-dimensional echocardiographic tracking. The American Journal of Cardiology, 98: 1531–1537, 2006.
215. Vendelin M., Bovendeerd PH, Engelbrecht J., Arts T. Optimizing ventricular fibers: Uniform strain or stress, but not atp consumption, leads to high efficiency. American Journal of Physiology. Heart and Circulatory Physiology, 283: H1072–1081, 2002.
216. Gilman G., Khandheria B.K., Hagen M.E., Abraham T.P., Seward J.B., Belohlavek M. Strain rate and strain: A step-by-step approach to image and data acquisition. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 17: 1011–1020, 2004.
217. D’Hooge J., Heimdal A., Jamal F., Kukulski T., Bijnens B., Rademakers F., Hatle L., Suetens P., Sutherland G.R. Regional strain and strain rate measurements by cardiac ultrasound: Principles, implementation and limitations. European Journal of Echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 1: 154–170, 2000.
218. Dandel M., Hetzer R. Echocardiographic strain and strain rate imaging-clinical applications. International Journal of Cardiology, 132: 11–24, 2009.
219. Mor-Avi V., Lang R.M., Badano L.P., Belohlavek M., Cardim N.M., Derumeaux G., Galderisi M., Marwick T., Nagueh S.F., Sengupta P.P., Sicari R., Smiseth O.A., Smulevitz B., Takeuchi M., Thomas J.D., Vannan M., Voigt J.U., Zamorano J.L. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: Ase/eae consensus statement on methodology and indications endorsed by the japanese society of echocardiography. European Journal of Echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 12: 167–205, 2011.
220. Pislaru C., Anagnostopoulos P.C., Seward J.B., Greenleaf J.F., Belohlavek M. Higher myocardial strain rates during isovolumic relaxation phase than during ejection characterize acutely ischemic myocardium. Journal of the American College of Cardiology, 40: 1487–1494, 2002.
221. Hashimoto I., Li X., Hejmadi Bhat A., Jones M., Zetts A.D., Sahn D.J. Myocardia strain rate is a superior method for evaluation of left ventricular subendocardial function compared with tissue doppler imaging. Journal of the American College of Cardiology, 42: 1574–1583, 2003.
222. Gorcsan J., 3rd, Tanaka H. Echocardiographic assessment of myocardial strain. Journal of the American College of Cardiology, 58: 1401–1413, 2011.
223. Thomas J.D., Popovic Z.B. Assessment of left ventricular function by cardiac ultrasound. Journal of the American College of Cardiology, 48: 2012–2025, 2006.
224. Voigt J.U., Exner B., Schmiedehausen K., Huchzermeyer C., Reulbach U., Nixdorff U., Platsch G., Kuwert T., Daniel W.G., Flachskampf F.A. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation, 107: 2120–2126, 2003.
225. Thambyrajah J., Vijayalakshmi K., Graham R.J., Turley A.J., de Belder M.A., Stewart M.J. Strain rate imaging pre- and post-percutaneous coronary intervention: A potential role in the objective detection of ischaemia in exercise stress echocardiography. European Journal of echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 9: 646–654, 2008.
226. Ingul C.B., Stoylen A., Slordahl S.A., Wiseth R., Burgess M., Marwick T.H. Automated analysis of myocardial deformation at dobutamine stress echocardiography: An angiographic validation. Journal of the American College of Cardiology, 49: 1651–1659, 2007.
227. Hoffmann R., Altiok E., Nowak B., Heussen N., Kuhl H., Kaiser HJ, Bull U., Hanrath P. Strain rate measurement by doppler echocardiography allows improved assessment of myocardial viability inpatients with depressed left ventricular function. Journal of the American College of Cardiology, 39: 443–449, 2002.
228. Toyoda T., Baba H., Akasaka T., Akiyama M., Neishi Y., Tomita J., Sukmawan R., Koyama Y., Watanabe N., Tamano S., Shinomura R., Komuro I., Yoshida K. Assessment of regional myocardial strain by a novel automated tracking system from digital image files. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 17: 1234–1238, 2004.
229. Suhling M., Jansen C., Arigovindan M., Buser P., Marsch S., Unser M., Hunziker P. Multiscale motion mapping: A novel computer vision technique for quantitative, objective echocardiographic motion measurement independent of doppler: First clinical description and validation. Circulation, 110: 3093–3099, 2004.
230. Cannesson M., Tanabe M., Suffoletto M.S., Schwartzman D., Gorcsan J., 3rd. Velocity vector imaging to quantify ventricular dyssynchrony and predict response to cardiac resynchronization therapy. Am. J. Cardiol., 98: 949–953, 2006.
231. Papademetris X., Sinusas A.J., Dione D.P., Duncan J.S. Estimation of 3d left ventricular deformation from echocardiography. Med. Image Anal., 5: 17–28, 2001.
232. Pislaru C., Pellikka P.A. Tissue doppler and strain-rate imaging in cardiac ultrasound imaging: Valuable tools or expensive ornaments? Expert Review of Cardiovascular Therapy, 3: 1–4, 2005.
233. Marwick T.H. Measurement of strain and strain rate by echocardiography: Ready for prime time? Journal of the American College of Cardiology, 47: 1313–1327, 2006.
234. Abraham T.P., Dimaano V.L., Liang H.Y. Role of tissue doppler and strain echocardiography in current clinical practice. Circulation, 116: 2597–2609, 2007.
235. Teske A.J., De Boeck B.W., Melman P.G., Sieswerda G.T., Doevendans P.A., Cramer M.J. Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking. Cardiovascular Ultrasound, 5: 27, 2007.
236. Ingul C.B., Torp H., Aase S.A., Berg S., Stoylen A., Slordahl S.A. Automated analysis of strain rate and strain: Feasibility and clinical implications. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 18: 411–418, 2005.
237. Edler I., Hertz C.H. Use of ultrasonic reflectoscope for the continuous recording of movements of heart walls. Kungl Fysiogr Sallsk Lund Forth., 24: 40, 1954.
238. Gilbert B.W., Schatz R.A., VonRamm O.T., Behar V.S., Kisslo J.A. Mitral valve prolapse. Two-dimensional echocardiographic and angiographic correlation. Circulation, 54: 716–723, 1976.
239. Bonow R.O., Carabello B.A., Chatterjee K., de Leon A.C., Jr., Faxon D.P, Freed M.D., Gaasch W.H., Lytle B.W., Nishimura R.A., O’Gara P.T., O’Rourke R.A., Otto C.M., Shah P.M., Shanewise J.S. 2008 focused update incorporated into the acc/aha 2006 guidelines for the management of patients with valvular heart disease: A report of the american college of cardiology/american heart association task force on practice guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): Endorsed by the society of cardiovascular anesthesiologists, society for cardiovascular angiography and interventions, and society of thoracic surgeons. Circulation, 118: e523–661, 2008.
240. Torbicki A., Perrier A., Konstantinides S., Agnelli G., Galie N., Pruszczyk P, Bengel F., Brady A.J., Ferreira D., Janssens U., Klepetko W., Mayer E., RemyJardin M., Bassand J.P. Guidelines on the diagnosis and management of acute pulmonary embolism: The task force for the diagnosis and management of acute pulmonary embolism of the european society of cardiology (esc). European Heart Journal, 29: 2276–2315, 2008.
241. Perk G., Lang R.M., Garcia-Fernandez M.A., Lodato J., Sugeng L., Lopez J., Knight B.P., Messika-Zeitoun D., Shah S., Slater J., Brochet E., Varkey M., Hijazi Z., Marino N., Ruiz C., Kronzon I. Use of real time three-dimensional transesophageal echocardiography in intracardiac catheter based interventions. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 22: 865–882, 2009.
242. Angeli F.S., Zhang Y., Sievers R., Jun K., Yim S., Boyle A., Yeghiazarians Y. Injection of human bone marrow and mononuclear cell extract into infarcted mouse hearts results in functional improvement. The Open Cardiovascular Medicine Journal, 6: 38–43, 2012.
243. Ikonomidis I., Tzortzis S., Paraskevaidis I., Triantafyllidi H., Papadopoulos C., Papadakis I., Trivilou P., Parissis J., Anastasiou-Nana M., Lekakis J. Association of abnormal coronary microcirculatory function with impaired response of longitudinal left ventricular function during adenosine stress echocardiography in untreated hypertensive patients. European Heart Journal Cardiovascular Imaging, 2012.
244. Whitlow P.L., Feldman T., Pedersen W.R., Lim D.S., Kipperman R., Smalling R., Bajwa T., Herrmann H.C., Lasala J., Maddux J.T., Tuzcu M., Kapadia S., Trento A., Siegel R.J., Foster E., Glower D., Mauri L., Kar S. Acute and 12-month results with catheter-based mitral valve leaflet repair: The everest ii (endovascular valve edge-to-edge repair) high risk study. Journal of the American College of Cardiology, 59: 130–139, 2012.
245. Marijon E., Mirabel M., Celermajer D.S., Jouven X. Rheumatic heart disease. Lancet, 379: 953–964, 2012.
246. Kindermann I., Barth C., Mahfoud F., Ukena C., Lenski M., Yilmaz A., Klingel K., Kandolf R., Sechtem U., Cooper L.T., Bohm M. Update on myocarditis. Journal of the American College of Cardiology, 59: 779–792, 2012.
247. Inaba Y., Lindner J.R. Molecular imaging of disease with targeted contrast ultrasound imaging. Translational Research: the Journal of Laboratory and Clinical Medicine, 159: 140–148, 2012.
248. Evans C.F., Gammie J.S. Surgical management of mitral valve infective endocarditis. Seminars in thoracic and cardiovascular surgery, 23: 232–240, 2011.
249. Lloyd-Jones D., Adams RJ, Brown TM, Carnethon M., Dai S., De Simone G., Ferguson TB, Ford E., Furie K., Gillespie C., Go A., Greenlund K., Haase N., Hailpern S., Ho PM, Howard V., Kissela B., Kittner S., Lackland D., Lisabeth L., Marelli A., McDermott MM, Meigs J., Mozaffarian D., Mussolino M., Nichol G., Roger VL, Rosamond W., Sacco R., Sorlie P., Roger VL, Thom T., WasserthielSmoller S., Wong ND, Wylie-Rosett J. Heart disease and stroke statistics – 2010 update: A report from the american heart association. Circulation, 121: e46–e215, 2010.
250. Fuster V., Voute J. Mdgs: Chronic diseases are not on the agenda. Lancet, 366: 1512–1514, 2005.
251. Taylor AJ, Cerqueira M., Hodgson JM, Mark D., Min J., O’Gara P., Rubin G.D. Accf/scct/acr/aha/ase/asnc/nasci/scai/scmr 2010 appropriate use criteria for cardiac computed tomography. A report of the american college of cardiology foundation appropriate use criteria task force, the society of cardiovascular computed tomography, the american college of radiology, the american heart association, the american society of echocardiography, the american society of nuclear cardiology, the north american society for cardiovascular imaging, the society for cardiovascular angiography and interventions, and the society for cardiovascular magnetic resonance. Circulation, 122: e525–555, 2010.
252. Sechtem U., Achenbach S., Friedrich M., Wackers F., Zamorano J.L. Non-invasive imaging in acute chest pain syndromes. European Heart Journal cardiovascular Imaging, 13: 69–78, 2012.
253. Hendel R.C., Abbott B.G., Bateman T.M., Blankstein R., Calnon D.A., Leppo J.A., Maddahi J., Schumaecker M.M., Shaw L.J., Ward R.P., Wolinsky D.G. The role of radionuclide myocardial perfusion imaging for asymptomatic individuals. Journal of Nuclear Cardiology: official publication of the American Society of Nuclear Cardiology, 18: 3–15, 2011.
254. Sahn D.J., DeMaria A., Kisslo J., Weyman A. Recommendations regarding quantitation in m-mode echocardiography: Results of a survey of echocardiographic measurements. Circulation, 58: 1072–1083, 1978.
255. Schiller N.B., Shah P.M., Crawford M., DeMaria A., Devereux R., Feigenbaum H., Gutgesell H., Reichek N., Sahn D., Schnittger I., et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American society of echocardiography committee on standards, subcommittee on quantitation of two-dimensional echocardiograms. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 2: 358–367, 1989.
256. Konofagou E., Ophir J. A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and poisson’s ratios in tissues. Ultrasound in Medicine & Biology, 24: 1183–1199, 1998.
257. Chen E.J., Jenkins W.K., O’Brien W.D., Jr. Performance of ultrasonic speckle tracking in various tissues. The Journal of the Acoustical Society of America, 98: 1273–1278, 1995.
258. Rudski L.G., Lai W.W., Afilalo J., Hua L., Handschumacher M.D., Chandrasekaran K., Solomon S.D., Louie E.K., Schiller N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the american society of echocardiography endorsed by the european association of echocardiography, a registered branch of the european society of cardiology, and the canadian society of echocardiography. J. Am. Soc. Echocardiogr., 23: 685–713, 2010.
259. Meluzin J., Spinarova L., Bakala J., Toman J., Krejci J., Hude P., Kara T., Soucek M. Pulsed doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur. Heart. J., 22: 340–348, 2001.
260. Kaluzynski K., Chen X., Emelianov S.Y., Skovoroda A.R., O’Donnell M. Strain rate imaging using two-dimensional speckle tracking. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48: 1111–1123, 2001.
261. D’Hooge J., Konofagou E., Jamal F., Heimdal A., Barrios L., Bijnens B., Thoen J., Van de Werf F., Sutherland G., Suetens P. Two-dimensional ultrasonic strain rate measurement of the human heart in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 49: 281–286, 2002.
262. Langeland S., D’Hooge J., Claessens T., Claus P., Verdonck P., Suetens P., Sutherland G.R., Bijnens B. Rf-based two-dimensional cardiac strain estimation: A validation study in a tissue-mimicking phantom. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 51: 1537–1546, 2004.
263. Sengupta P.P., Krishnamoorthy V.K., Korinek J., Narula J., Vannan M.A., Lester S.J., Tajik J.A., Seward J.B., Khandheria B.K., Belohlavek M. Left ventricular form and function revisited: Applied translational science to cardiovascular ultrasound imaging. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 20: 539–551, 2007.
264. Meunier J. Tissue motion assessment from 3d echographic speckle tracking. Physics in Medicine and Biology, 43: 1241–1254, 1998.
265. Chen X., Xie H., Erkamp R., Kim K., Jia C., Rubin J.M., O’Donnell M. 3-d correlation-based speckle tracking. Ultrasonic Imaging, 27: 21–36, 2005.
266. Holrege C. The heart: A pulsing and perceptive center. In: Holrege C., ed. The Dynamic Heart and Circulation. Fair Oaks, CA: AWSNA, 2002.
267. Bogaert J., Rademakers FE. Regional nonuniformity of normal adult human left ventricle. American Journal of Physiology. Heart and Circulatory Physiology, 280: H610–620, 2001.
268. Quinones M.A., Douglas P.S., Foster E., Gorcsan J., 3rd, Lewis J.F., Pearlman A.S., Rychik J., Salcedo E.E., Seward J.B., Stevenson J.G., Thys D.M., Weitz H.H., Zoghbi W.A., Creager M.A., Winters W.L, Jr., Elnicki M., Hirshfeld J.W., Jr., Lorell B.H., Rodgers G.P., Tracy C.M., Weitz H.H. American college of cardiology/american heart association clinical competence statement on echocardiography: A report of the american college of cardiology/american heart association/American college of physicians – american society of internal medicine task force on clinical competence. Circulation, 107: 1068–1089, 2003.
269. Hoffmann R., von Bardeleben S., Kasprzak J.D., Borges A.C., Ten Cate F., Firschke C., Lafitte S., Al-Saadi N., Kuntz-Hehner S., Horstick G., Greis C., Engelhardt M., Vanoverschelde J.L., Becher H. Analysis of regional left ventricular function by cineventriculography, cardiac magnetic resonance imaging, and unenhanced and contrast-enhanced echocardiography: A multicenter comparison of methods. Journal of the American College of Cardiology, 47: 121–128, 2006.
270. Blondheim D.S., Beeri R., Feinberg M.S., Vaturi M., Shimoni S., Fehske W., Sagie A., Rosenmann D., Lysyansky P., Deutsch L., Leitman M., Kuperstein R., Hay I., Gilon D., Friedman Z., Agmon Y., Tsadok Y., Liel-Cohen N. Reliability of visual assessment of global and segmental left ventricular function: A multicenter study by the israeli echocardiography research group. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 23: 258–264, 2010.
271. Yeung F., Levinson SF, Parker K.J. Multilevel and motion model-based ultrasonic speckle tracking algorithms. Ultrasound in Medicine & Biology, 24: 427–441, 1998.
272. Kisslo J., Firek B., Ota T., Kang DH, Fleishman CE, Stetten G., Li J., Ohazama C.J., Adams D., Landolfo C., Ryan T., von Ramm O. Real-time volumetric echocardiography: The technology and the possibilities. Echocardiography, 17: 773–779, 2000.
273. Ahmad M. Real-time three-dimensional echocardiography in assessment of heart disease. Echocardiography, 18: 73–77, 2001.
274. Marsan N.A., Tops L.F., Nihoyannopoulos P., Holman E.R., Bax J.J. Real-time three dimensional echocardiography: Current and future clinical applications. Heart, 95: 1881–1890, 2009.
275. Perez de Isla L., Balcones D.V., Fernandez-Golfin C., Marcos-Alberca P., Almeria C., Rodrigo J.L., Macaya C., Zamorano J. Three-dimensional-wall motion tracking: A new and faster tool for myocardial strain assessment: Comparison with two-dimensional-wall motion tracking. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 22: 325–330, 2009.
276. Zarembo L.K., Krasilnikow V.A. Wwiedienije w nieliniejnuju akustiku. Izdatielstwo – Nauka, 1966.
277. Lang R.M., Bierig M., Devereux R.B., Flachskampf F.A., Foster E., Pellikka P.A., Picard M.H., Roman M.J., Seward J., Shanewise J., Solomon S., Spencer K.T., St. John Sutton M., Stewart W. Recommendations for chamber quantification. Eur. J. Echocardiogr., 7: 79–108, 2006.
278. Wagner G.S. Normal elektrocardiography. In: Marriott’s practical elektrocardiography. 11th ed. New York: Lippincott Williams and Wilkins, 44–69, 2008.
279. Anderson B. Echocardiography: The normal examination and echocardiographic measurements. Mantly, Queensland, Australia, 2000.
280. Chou T. Elektrocardiography in clinical practice adult and pediatric. W.B. Saunders Company, 1979.
281. Douglas G., Nicol F., Robertson C. Macleod’s clinical examination. Elsevier Churchill Livingstone, 2005.
282. Cerqueira M.D., Weissman N.J., Dilsizian V., Jacobs A.K., Kaul S., Laskey W.K., Pennell D.J., Rumberger J.A., Ryan T., Verani M.S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation, 105: 539–542, 2002.
283. Bland J.M., Altman D.G. Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8: 135–160, 1999.
284. Nowicki A. Ultradźwięki w Medycynie, Wydawnictwo Instytutu Podstawowych Problemow Techniki PAN. Warszawa 2010.
285. Wagner R.F, Smith S.W., Sandrik J.M., Lopez H., Statistics of speckle in ultrasound b-scans. IEEE Trans. Sonics Ultrasonics, 30 (3): 156–163, 1983.
286. Nowicki A. Wstęp do ultrasonografii. Podstawy fizyczne i instrumentacja, Medipage. Warszawa 2003.
287. Byron F.W., Fuller R.W. Matematyka w fizyce klasycznej i kwantowej. tom I, 1975.
288. Byron F.W., Fuller R.W. Matematyka w fizyce klasycznej i kwantowej. Tom II, 1975.
289. Blotekjaer K., Ingebrigtsen K.A., Skeie H. A method for analyzing waves in structures consisting of metal strips on dispersive media. IEEE Trans. Electron. Devices, 20 (12): 1133–1138, 1973.
290. Wojcik J., Nowicki A., Lewin P.A., Bloomfield P.E, Kujawska T., Filipczynski L. Wave envelopes method for description of nonlinear acoustic wave propagation. Ultrasonics, 44: 310–329, 2006.
291. Wojcik J., Kujawska T., Nowicki A., Lewin P.A. Fast prediction of pulsed nonlinear acoustic fields from clinically relevant sources using time-averaged wave envelope approach: Comparison of numerical simulations and experimental results. Ultrasonics, 48: 707–715, 2008.
292. Douglas P.S., Khandheria B., Stainback R.F., Weissman N.J., Brindis R.G., Patel M.R., Alpert J.S., Fitzgerald D., Heidenreich P., Martin E.T., Messer J.V., Miller A.B., Picard M.H., Raggi P., Reed K.D., Rumsfeld J.S., Steimle A.E., Tonkovic R., Vijayaraghavan K., Yeon S.B., Hendel R.C., Peterson E., Wolk M.J., Allen J.M. Accf/ase/acep/asnc/scai/scct/scmr 2007 appropriateness criteria for transthoracic and transesophageal echocardiography: A report of the american college of cardiology foundation quality strategic directions committee appropriateness criteria working group, american society of echocardiography, american college of emergency physicians, american society of nuclear cardiology, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, and the society for cardiovascular magnetic resonance. Endorsed by the american college of chest physicians and the society of critical care medicine. Journal of the American Society of Echocardiography: official pulication of the American Society of Echocardiography, 20: 787–805, 2007.
293. Picano E. Economic and biological costs of cardiac imaging. Cardiovascular Ultrasound, 3: 13, 2005.
294. Otero H.J., Rybicki F.J., Greenberg D., Mitsouras D., Mendoza J.A., Neumann P.J. Cost-effective diagnostic cardiovascular imaging: When does it provide good value for the money? The International Journal of Cardiovascular Imaging, 26: 605–612, 2010.
295. Maecken T., Zinke H., Zenz M., Grau T. How should anesthesiologists perform ultrasound examinations? Diagnostic use of ultrasound in emergency and intensive care and medicine. Der Anaesthesist, 60: 203–213, 2011.
296. Bose R., Matyal R., Panzica P., Karthik S., Subramaniam B., Pawlowski J., Mitchell J., Mahmood F. Transesophageal echocardiography simulator: A new learning tool. Journal of Cardiothoracic and Vascular Anesthesia, 23: 544–548, 2009.
297. Evangelista A., Flachskampf F., Lancellotti P., Badano L., Aguilar R., Monaghan M., Zamorano J., Nihoyannopoulos P. European association of echocardiography recommendations for standardization of performance, digital storage and reporting of echocardiographic studies. European Journal of Echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 9: 438–448, 2008.
298. Brown A.K., Roberts T.E., O’Connor P.J., Wakefield R.J., Karim Z., Emery P. The development of an evidence-based educational framework to facilitate the training of competent rheumatologist ultrasonographers. Rheumatology (Oxford), 46: 391–397, 2007.
299. Lesniak-Plewinska B., Cygan S., Kaluzynski K., D’Hooge J., Zmigrodzki J., Kowalik E., Kordybach M., Kowalski M. A dual-chamber, thick-walled cardiac phantom for use in cardiac motion and deformation imaging by ultrasound. Ultrasound in Medicine & Biology, 36: 1145–1156, 2010.
300. Torrent-Guasp F., Ballester M., Buckberg G.D., Carreras F., Flotats A., Carrio I., Ferreira A., Samuels L.E., Narula J. Spatial orientation of the ventricular muscle band: Physiologic contribution and surgical implications. The Journal of Thoracic and Cardiovascular surgery, 122: 389–392, 2001.
301. Sengupta P.P., Korinek J., Belohlavek M., Narula J., Vannan M.A., Jahangir A., Khandheria B.K. Left ventricular structure and function: Basic science for cardiac imaging. Journal of the American College of Cardiology, 48: 1988–2001, 2006.
302. Burns A.T., McDonald I.G., Thomas J.D., Macisaac A., Prior D. Doin’ the twist: New tools for an old concept of myocardial function. Heart, 94: 978–983, 2008.
303. Weiner R.B., Baggish A.L. Exercise-induced cardiac remodeling. Progress in Cardiovascular Diseases, 54: 380–386, 2012.
304. Roeske W.R., O’Rourke R.A., Klein A., Leopold G., Karliner J.S. Noninvasive evaluation of ventricular hypertrophy in professional athletes. Circulation, 53: 286–291, 1976.
305. Maron B.J., Isner J.M., McKenna W.J. 26th bethesda conference: Recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task force 3: Hypertrophic cardiomyopathy, myocarditis and other myopericardial diseases and mitral valve prolapse. Journal of the American College of Cardiology, 24: 880–885, 1994.
306. Abergel E., Chatellier G., Hagege A.A., Oblak A., Linhart A., Ducardonnet A., Menard J. Serial left ventricular adaptations in world-class professional cyclists: Implications for disease screening and follow-up. Journal of the American College of Cardiology, 44: 144–149, 2004.
307. Notomi Y., Lysyansky P., Setser R.M., Shiota T., Popovic Z.B., Martin-Miklovic M.G., Weaver J.A., Oryszak S.J., Greenberg N.L., White R.D., Thomas J.D. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. Journal of the American College of Cardiology, 45: 2034–2041, 2005.
308. de Isla L.P., de Agustin A., Rodrigo J.L., Almeria C., del Carmen Manzano M., Rodriguez E., Garcia A., Macaya C., Zamorano J. Chronic mitral regurgitation: A pilot study to assess preoperative left ventricular contractile function using speckletracking echocardiography. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 22: 831–838, 2009.
309. Maron B.J. Structural features of the athlete heart as defined by echocardiography. Journal of the American College of Cardiology, 7: 190–203, 1986.
310. Morganroth J., Maron B.J., Henry W.L., Epstein S.E. Comparative left ventricular dimensions in trained athletes. Annals of Internal Medicine, 82: 521–524, 1975.
311. Fagard R., Aubert A., Lysens R., Staessen J., Vanhees L., Amery A. Noninvasive assessment of seasonal variations in cardiac structure and function in cyclists. Circulation, 67: 896–901, 1983.
312. Olszewski R., Adamus J. Kardiomiopatie. Nowa Klin., 9: 1164–1167, 2002.
313. Kamiński L., Płońska E., Szyszka A., Peregud M., Olszewski R. Porównanie wybranych parametrów echokardiograficznych u sportowców poddanych różnym rodzajom treningu. Pol. Merkuriusz Lek., 20: 274–278, 2006.
314. Rawlins J., Bhan A., Sharma S. Left ventricular hypertrophy in athletes. European Journal of Echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 10: 350–356, 2009.
315. Maron B.J., Pelliccia A., Spirito P. Cardiac disease in young trained athletes. Insights into methods for distinguishing athlete’s heart from structural heart disease, with particular emphasis on hypertrophic cardiomyopathy. Circulation, 91: 1596–1601, 1995.
316. Sharma S., Maron B.J., Whyte G., Firoozi S., Elliott P.M., McKenna W.J. Physiologic limits of left ventricular hypertrophy in elite junior athletes: Relevance to differential diagnosis of athlete’s heart and hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 40: 1431–1436, 2002.
317. Pelliccia A., Kinoshita N., Pisicchio C., Quattrini F., Dipaolo FM, Ciardo R., Di Giacinto B., Guerra E., De Blasiis E., Casasco M., Culasso F., Maron B.J. Longterm clinical consequences of intense, uninterrupted endurance training in Olympic athletes. Journal of the American College of Cardiology, 55: 1619–1625, 2010.
318. Maron B.J., Roberts W.C., McAllister H.A., Rosing D.R., Epstein S.E. Sudden death in young athletes. Circulation, 62: 218–229, 1980.
319. Burke A.P., Farb A., Virmani R., Goodin J., Smialek J.E. Sports-related and nonsports-related sudden cardiac death in young adults. American Heart Journal, 121: 568–575, 1991.
320. Gersh B.J., Maron B.J., Bonow R.O., Dearani J.A., Fifer M.A., Link M.S, Naidu S.S, Nishimura R.A., Ommen S.R., Rakowski H., Seidman C.E., Towbin J.A., Udelson J.E., Yancy C.W. 2011 accf/aha guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. Developed in collaboration with the american association for thoracic surgery, american society of echocardiography, american society of nuclear cardiology, heart failure society of america, heart rhythm society, society for cardiovascular angiography and interventions, and society of thoracic surgeons. Journal of the American College of Cardiology, 58: e212–260, 2011.
321. Gibson D.G., Brown D. Measurement of instantaneous left ventricular dimension and filling rate in man, using echocardiography. British Heart Journal, 35: 1141–1149, 1973.
322. Myers J.H., Stirling M.C., Choy M., Buda A.J., Gallagher K.P. Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiography. Circulation, 74: 164–172, 1986.
323. Devereux R.B. Detection of left ventricular hypertrophy by m-mode echocardiography. Anatomic validation, standardization, and comparison to other methods. Hypertension, 9: II19–26, 1987.
324. Gorcsan J., 3rd, Romand J.A., Mandarino W.A., Deneault L.G., Pinsky M.R. Assessment of left ventricular performance by on-line pressure-area relations using echocardiographic automated border detection. Journal of the American College of Cardiology, 23: 242–252, 1994.
325. Perez J.E., Waggoner A.D., Barzilai B., Melton H.E., Jr., Miller J.G., Sobel B.E. On-line assessment of ventricular function by automatic boundary detection and ultrasonic backscatter imaging. Journal of the American College of Cardiology, 19: 313–320, 1992.
326. Perez J.E., Miller J.G., Holland M.R., Wickline S.A., Waggoner A.D., Barzilai B., Sobel B.E. Ultrasonic tissue characterization: Integrated backscatter imaging for detecting myocardial structural properties and on-line quantitation of cardiac function. American Journal of Cardiac Omaging, 8: 106–112, 1994.
327. Vitarelli A., Sciomer S., Penco M., Dagianti A., Pugliese M. Assessment of left ventricular dyssynergy by color kinesis. The American Journal of Cardiology, 81: 86G–90G, 1998.
328. Mobilia G., Buchberger R. Automated color-coded detection of endocardial boundary movements “color kinesis”. Cardiologia, 42: 425–427, 1997.
329. Godoy I.E.,Mor-AviV., Weinert L., Vignon P.,Korcarz C., Spencer K.T., Lang R.M. Use of color kinesis for evaluation of left ventricular filling in patients with dilated cardiomyopathy and mitral regurgitation. Journal of the American College of Cardiology, 31: 1598–1606, 1998.
330. Caso P., Sutherland G.R., Fleming A., McDicken W.N. Doppler tissue imaging: Current status and future prospects. Giornale Italiano di Cardiologia, 25: 639–647, 1995.
331. Veyrat C., Pellerin D., Larrazet F. Myocardial doppler tissue imaging: Past, present and future. Archives des Maladies du Coeur et des Vaisseaux, 90: 1391–1402, 1997.
332. Ng A.C., Thomas L., Leung D.Y. Tissue doppler echocardiography. Minerva Cardioangiologica, 58: 357–378, 2010.
333. Caidahl K., Kazzam E., Lidberg J., Neumann Andersen G., Nordanstig J., Rantapaa Dahlqvist S., Waldenstrom A., Wikh R. New concept in echocardiography: Harmonic imaging of tissue without use of contrast agent. Lancet, 352: 1264–1270, 1998.
334. Behar V., Adam D., Lysyansky P., Friedman Z. The combined effect of nonlinear filtration and window size on the accuracy of tissue displacement estimation using detected echo signals. Ultrasonics, 41: 743–753, 2004.
335. Reisner S.A., Lysyansky P., Agmon Y., Mutlak D., Lessick J., Friedman Z. Global longitudinal strain: A novel index of left ventricular systolic function. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 17: 630–633, 2004.
336. Soliman O.I., van Dalen B.M., Nemes A., Zwaan H.B., Vletter W.B., Ten Cate F.J, Theuns D.A., Jordaens L.J., Geleijnse M.L. Quantification of left ventricular systolic dyssynchrony by real-time three-dimensional echocardiography. J. Am. Soc. Echocardiogr., 22: 232–239, 2009.
337. Caiani E.G, Corsi C., Sugeng L., MacEneaney P., Weinert L., Mor-Avi V., Lang R.M. Improved quantification of left ventricular mass based on endocardial and epicardial surface detection with real time three dimensional echocardiography. Heart, 92: 213–219, 2006.
338. Jacobs L.D., Salgo I.S., Goonewardena S., Weinert L., Coon P., Bardo D., Gerard O., Allain P., Zamorano J.L., de Isla L,P., Mor-Avi V., Lang R.M. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. European Heart Journal, 27: 460–468, 2006.
339. Mor-Avi V., Sugeng L., Lang R.M. Real-time 3-dimensional echocardiography: An integral component of the routine echocardiographic examination in adult patients? Circulation, 119: 314–329, 2009.
340. de Isla L.P., Vivas D., Zamorano J. Three-dimensional speckle tracking. Current Cardiovascular Imaging Reports, 1: 5, 2008.
341. Marcucci C., Lauer R., Mahajan A. New echocardiographic techniques for evaluating left ventricular myocardial function. Seminars in Cardiothoracic and Vascular Anesthesia, 12: 228–247, 2008.
342. Kalogeropoulos A.P., Georgiopoulou V.V., Gheorghiade M., Butler J. Echocardiographic evaluation of left ventricular structure and function: New modalities and potential applications in clinical trials. Journal of Cardiac Failure, 18: 159–172, 2012.
343. Mondillo S., Galderisi M., Mele D., Cameli M., Lomoriello V.S., Zaca V., Ballo P., D’Andrea A., Muraru D., Losi M., Agricola E., D’Errico A., Buralli S., Sciomer S., Nistri S., Badano L. Speckle-tracking echocardiography: A new technique for assessing myocardial function. Journal of Ultrasound in Medicine: official journal of the American Institute of Ultrasound in Medicine, 30: 71–83, 2011.
344. Burri M.V., Gupta D., Kerber R.E., Weiss R.M. Review of novel clinical applications of advanced, real-time, 3-dimensional echocardiography. Translational Research: the Journal of Laboratory and Clinical Medicine, 159: 149–164, 2012.
345. Salgo I.S., Tsang W., Ackerman W., Ahmad H., Chandra S., Cardinale M., Lang R.M. Geometric assessment of regional left ventricular remodeling by three-dimensional echocardiographic shape analysis correlates with left ventricular function. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 25: 80–88, 2012.
346. Abusaid G.H., Ahmad M. Real time three-dimensional stress echocardiography advantages and limitations. Echocardiography, 29: 200–206, 2012.
347. Nesser H.J., Mor-Avi V., Gorissen W., Weinert L., Steringer-Mascherbauer R., Niel J., Sugeng L., Lang R.M. Quantification of left ventricular volumes using threedimensional echocardiographic speckle tracking: Comparison with MRI. European Heart Journal, 30: 1565–1573, 2009.
348. Seo Y., Ishizu T., Enomoto Y., Sugimori H., Yamamoto M., Machino T., Kawamura R., Aonuma K. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ. Cardiovasc. Imaging, 2: 451–459, 2009.
349. Hayat D., Kloeckner M., Nahum J., Ecochard-Dugelay E., Dubois-Rande J.L., Jean-Francois D., Gueret P., Lim P. Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease. The American Journal of Cardiology, 109: 180–186, 2012.
350. Maffessanti F., Nesser H.J., Weinert L., Steringer-Mascherbauer R., Niel J., Gorissen W., Sugeng L., Lang R.M., Mor-Avi V. Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. The American Journal of Cardiology, 104: 1755–1762, 2009.
351. Leitman M., Lysiansky M., Lysyansky P., Friedman Z., Tyomkin V., Fuchs T., Adam D., Krakover R., Vered Z. Circumferential and longitudinal strain in 3 myocardial layers in normal subjects and in patients with regional left ventricular dysfunction. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 23: 64–70, 2010.
352. Kim H.K., Sohn D.W., Lee S.E., Choi S.Y., Park J.S.,Kim Y.J.,Oh B.H., Park Y.B., Choi Y.S. Assessment of left ventricular rotation and torsion with two-dimensional speckle tracking echocardiography. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 20: 45–53, 2007.
353. Takahashi K., Al Naami G., Thompson R., Inage A., Mackie A.S., Smallhorn J.F. Normal rotational, torsion and untwisting data in children, adolescents and young adults. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography, 23: 286–293, 2010.
354. Andrade J., Cortez L.D., Campos O., Arruda A.L., Pinheiro J., Vulcanis L., Shiratsuchi T.S., Kalil-Filho R., Cerri G.G. Left ventricular twist: Comparison between two- and three-dimensional speckle-tracking echocardiography in healthy volunteers. European Journal of Echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 12: 76–79, 2011.
355. Sallis J.F., Floyd M.F., Rodriguez D.A., Saelens B.E. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation, 125: 729–737, 2012.
356. Hagstromer M., Troiano R.P., Sjostrom M., Berrigan D. Levels and patterns of objectively assessed physical activity – a comparison between sweden and the united states. American Journal of Epidemiology, 171: 1055–1064, 2010.
357. Fernstrom M.H., Reed K.A., Rahavi E.B., Dooher C.C. Communication strategies to help reduce the prevalence of non-communicable diseases: Proceedings from the inaugural ific foundation global diet and physical activity communications summit. Nutrition Reviews, 70: 301–310, 2012.
358. Wexler R., Pleister A., Raman S.V., Borchers J.R. Therapeutic lifestyle changes for cardiovascular disease. The Physician and Sportsmedicine, 40: 109–115, 2012.
359. Sorajja P., Ommen S.R., Nishimura R.A., Gersh B.J., Berger P.B., Tajik A.J. Adverse prognosis of patients with hypertrophic cardiomyopathy who have epicardial coronary artery disease. Circulation, 108: 2342–2348, 2003.
360. Semsarian C. Guidelines for the diagnosis and management of hypertrophic cardiomyopathy. Heart, Lung & Circulation, 20: 688–690, 2011.
361. Zaidi A., Sharma S. The athlete’s heart. Br. J. Hosp. Med. (Lond), 72: 275–281, 2011.
362. Mor-Avi V., Jenkins C., Kuhl H.P., Nesser H.J., Marwick T., Franke A., Ebner C., Freed B.H., Steringer-Mascherbauer R., Pollard H., Weinert L., Niel J., Sugeng L., Lang R.M. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: Multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC. Cardiovascular Imaging, 1: 413–423, 2008.
363. Lang R.M., Mor-Avi V., Dent J.M., Kramer C.M. Three-dimensional echocardiography: Is it ready for everyday clinical use? JACC. Cardiovascular Imaging, 2: 114–117, 2009.
364. Leung K.Y., Bosch J.G. Automated border detection in three-dimensional echocardiography: Principles and promises. European Journal of Echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology, 11: 97–108, 2010.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBE-0007-0002
Identyfikatory