Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

The role of lamellate phospholipid bilayers in lubrication of joints

Autorzy Pawlak, Z.  Urbaniak, W.  Gadomski, A.  Yusuf, K.Q.  Afara, I.O.  Oloyede, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN This study aims to determine the effect of progressive loss of the surface active phospholipids on the characteristics, and hence tribological function of articular cartilage. In accordance to Hill's hypothesis, 3-7 lipid bilayers at pH 7.4 operate as the solid lubricant in the cartilage-cartilage interface during physiological function. These bilayers are known to be depleted during cartilage degeneration. This study models this loss of phospholipid bilayers, studying experimentally both wet and dry cartilage surfaces, measuring surface wettability, and friction coefficient under a constant stress of 1.2 MPa. The results demonstrate that the friction coefficient increases gradually with loss of the phospholipid bilayers, and gains in value with decrease in wettability.
Słowa kluczowe
PL chrząstka stawowa   lipidy   wilgotność   współczynnik tarcia  
EN articular cartilage   lipids   wettability   friction coefficient  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2012
Tom Vol. 14, nr 4
Strony 101--106
Opis fizyczny Bibliogr. 29 poz., rys.
autor Pawlak, Z.
autor Urbaniak, W.
autor Gadomski, A.
autor Yusuf, K.Q.
autor Afara, I.O.
autor Oloyede, A.
[1] CHEN Y.L.E., GEE M.L., HELM C.A., ISRAELACHVILI J.N., MCGUIGGAN P.M., Effects of humidity on the structure and adhesion of amphiphilic monolayers on mica, The Journal of Physical Chemistry, 1989, 93, 7057–7059.
[2] GADOMSKI A., PAWLAK Z., OLOYEDE A., Directed Ion Transport as Virtual Cause of Some Facilitated Friction- Lubrication Mechanism Prevailing in Articular Cartilage, Tribology Letters, 2008, 30, 83–90.
[3] GREENE G.W., BANQUY X., LEE D.W., LOWREY D.D., Y.U.J., ISRAELACHVILI J.N., Adaptive mechanically controlled lubrication mechanism found in articular joints, Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5255–5259.
[4] GUERRA D., FRIZZIERO L., LOSI M., BACCHELLI B., MEZZADRI G., PASQUALI-RONCHENTTI I., Ultrastructural identification of a membrane-like structure on the surface of normal articular cartilage, Journal of Submicroscopic Cytology and Pathology, 1996, 28, 385–393.
[5] HIGAKI H., MURAKAMI T., NAKANISHI Y., MIURA H., MAWATARI T., IWAMOYO Y., The lubricating ability of biomembrane models with dipalmitoylphosphatidicholine and gamma globulin, Proceedings of the Institution of Mechanical Engineers, 1998, 212, 23–35.
[6] HILLS B.A., The Biology of Surfactants, Cambridge University Press, New York, 1988.
[7] HILLS B.A., Oligolamellar lubrication of joints by surface active phospholipid, The Journal of Rheumatology, 1989, 16, 82–91.
[8] HILLS B.A., Graphite-like lubrication of mesothelium by oligolamellar pleural surfactant, Journal of Applied Physiology, 1992, 73, 1034–1039.
[9] HILLS B.A., MONDS M.K., Deficiency of lubricating surfactants lining the articular surfaces of replaced hips and knees, British Society for Rheumatology, 1998, 37, 143–147.
[10] HILLS B.A., Boundary lubrication in vivo, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2000, 214, 83–94.
[11] HILLS B.A., CRAWFORD R.W., Normal and prosthetic synovia joints are lubricated by surface-active phospholipid: A hypothesis, Journal of Arthroplasty, 2003, 18, 499–505.
[12] JENSEN M.Ø., MOURITSEN O.G., Lipids do influence protein function – the hydrophobic matching hypothesis revisited, Biochimica et Biophysica Acta, 2004, 1666, 205–226.
[13] JURVELIN J.S., MULLER D.J., WONG M., STUDER D., ENGEL A., HUNZIKER E.B., Surface and subsurface morphology of bovine humeral articular cartilage as assessed by atomic force and transmission electron microscopy, The Journal of Structural Biology, 1996, 117, 45–54.
[14] KOBAYASHI S., YONEKUBO S., KURAGOUCHI Y., Cryoscanning electron microsopic study of the surface amorphous layer of articular cartilage, Journal of Anatomy, 1995, 187, 429–444.
[15] KUMAR P., OKA M., TOGUCHIDA J., KOBAYASHI M., UCHIDA E., NAKAMURA T., TANAKA K., Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints, Journal of Anatomy, 2001, 199, 241–250.
[16] LITTLE T., FREEMAN M.A.R., SWANSON S.A.V., Experiments on friction in the human hip joint, [in:] V. Wright (ed.), Lubrication and Wear in Joints London, UK, Sector Publishing, 1969, 110–116.
[17] MARRA J., ISRAELACHVILI J.N., Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions, Biochemistry, 1985, 24, 4608–4618.
[18] OLOYEDE A., GUDIMETLA P.V., CRAWFORD R.W., HILLS B., Biomechanical responses of normal and delipidized articular cartilage subjected to varying rates of loading, Connective Tissue Research, 2004, 45, 86–93.
[19] OZTUREK H.E., STOFFEL K., JONES C.F., STACHOWIAK G.W., The effect of surface-active phospholipids on the lubrication of osteoarthritic sheep knee joints: friction, Tribology Letters, 2004, 16, 283–289.
[20] PAWLAK Z., FIGASZEWSKI Z.A., GADOMSKI A., URBANIAK W., OLOYEDE A., The ultra-low friction of the articular surface is pH-dependent and is built on a hydrophobic underlay including a hypothesis on joint lubrication mechanism, Tribology International, 2010, 43, 1719–1725.
[21] PAWLAK Z., JURVELIN J.S., URBANIAK W., Biotribochemistry of the lubrication of natural joins, Tribologia, 2010a, 5, 131–141.
[22] PAWLAK Z., URBANIAK W., OLOYEDE A., The relationship between friction and wettability in aqueous environment, Wear, 2011, 271, 1745–1749.
[23] PAWLAK Z., PETELSKA A.D., URBANIAK W., YUSUF K.Q., OLOYEDE A., Relationship between wettability and lubrication characteristics of the surfaces of contacting phospholipids-based membranes, Cell Biochemistry and Biophysics, DOI: 10.1007/s12013-012-9437-z.
[24] PESIKA N.S., ZENG H., KRISTIANSEN K., ZHAO B., TIAN Y., AUTUMN K., ISRAELACHVILI J., Gecko adhesion pad: a smart surface? Journal of Physics, Condensed Matter, 2009, 21, 464132.
[25] RABINOWITZ J.L., GREGG J.R., NIXON J.E., Lipid composition of the tissues of human knee joints. II. Synovial fluid in trauma, Clinical Orthopedics and Related Research, 1983, 190, 292–298.
[26] RICHTER R.P., BÉRAT R., BRISSON A.R., Formation of solidsupported lipid bilayers: an integrated view, Langmuir, 2006, 22, 3497–3505.
[27] SIVAN S., SCHROEDER A., VERBERNE G., MERKHER Y., DIMINSKY D., PRIEV A., MAROUDAS A., HALPERIN G., NITZAN G., ETSION I., BARENHOLZ Y., Liposomes act as effective biolubricants for friction reduction in human synovial joints, Langmuir, 2010, 26, 1107–1116.
[28] TRUNFIO-SFARGHIU A.M., BERTHIER Y., MEURISSE M.H., RIEU J.P., Role of nanomechanical properties in the tribological performance of phospholipid biomimetic surfaces, Langmuir, 2008, 24, 8765–8771.
[29] WIERZCHOLSKI K., MISZCZAK A., Metody badań tribologicznych parametrów w inteligentnych bioreaktorach (Research methods of tribological parameters in intelligent bioreactors), Tribologia, 2007, 3–4, 355–368.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBD-0003-0038