Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

The mechanical properties of human ribs in young adult

Autorzy Pezowicz, C.  Głowacki, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN A good understanding of thoracic biomechanics is important for complete examination and control of chest behaviour under conditions of physiological and pathological work, and under the impact of external forces leading to traumatic loading of the chest. The purpose of the study was to analyse the mechanical properties of human ribs obtained from individuals under the age of 25 with scoliosis deformation and to correlate them with geometric properties of ribs. Thirty three fragments of ribs (9th to 12th) were tested in three-point bending. Rib fragments were collected intraoperatively from female patients treated for scoliosis in the thoracic, thoracolumbar, and lumbar spine. The results were used to determine the maximum failure force, stiffness, and Young's modulus. A significant relationship was found between the age and elastic modulus of the ribs. The analysis was carried out for two age groups, i.e., between the ages of 10 and 15 and between the ages of 16 and 22, and statistically significant differences were obtained for Young's modulus ( p = 0.0001) amounting to, respectively, 2.79 +- 1.34 GPa for the first group and 7.44 š+-2.85 GPa for the second group. The results show a significant impact of age on the mechanical properties of ribs.
Słowa kluczowe
PL żebro   skolioza   biomechanika   gięcie   siła  
EN rib   scoliosis   biomechanics   bending   strength  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2012
Tom Vol. 14, nr 2
Strony 53--60
Opis fizyczny Bibliogr. 41 poz., rys., tab.
autor Pezowicz, C.
autor Głowacki, M.
  • Division of Biomedical Engineering and Experimental Mechanics, Faculty of Mechanical Engineering, Wrocław University of Technology,
[1] AWREJCEWICZ J., ŁUCZAK B., The finite element model of the human rib cage, J. Theor. App. Mech., 2007, 45(1), 25–32.
[2] BOCHENEK A., REICHER M., Human Anathomy I (in Polish), PZWL, Warsaw, 1997.
[3] BURSTAIN A.H., REILLY D.T., MARTENS M., Aging of bone tissue: mechanical properties, J. Bone Joint Surg. Am., 1976, 58, 82–86.
[4] CAVANAUGH J.M., The biomechanics of thoracic trauma, [in:] Accidental Injury Biomechanics and Prevention, A.M. Nahum, J.J.W. Melvin (ed.), Springer-Verlag, New York, 1993, 362–390.
[5] CARTER D.R., HAYNES W.C., The compressive behavior of bone as a two-phase porous structure, J. Bone Joint Surg. Am., 1976, 59, 954–962.
[6] CERAN S., SUNAM G.S., ARIBAS O.K., GORMUS N., SOLAK H., Chest trauma in children, Eur. J. Cardiothorac. Surg., 2002, 21, 57–59.
[7] CHARPAIL E., LAPORTE S., TROSSEILLE X., VALANCIEN G., LAVASTE F., Material and structure characterization of human ribs, J. Biomech., 2006, 39, S155–S156.
[8] CHENG J.C.Y., GUO X., SHER A.H.L., Persistent osteopenia in adolescent idiopathic scoliosis, Spine, 1999, 24(12), 1218–1222.
[9] ČIHALOVÁ L., Biomechanical model of human thorax, J. Biomech., 2007, 40(S2), 155.
[10] CLIN J., AUBIN C.E., PARENT S., RONSKY J., LABELLE H., Biomechanical modeling of brace design, Stud. Health Technol. Inform., 2006, 123, 255–260.
[11] CORMIER J.M., STITZEL J.D., DUMA S.M., MATSUOKA F., Regional variation in the structural response and geometrical properties of human ribs, Proc. 49th Association for the Advancement Automotive Conference, Boston, MA., 2005.
[12] CRANDALL J.R., BASS C.R., PIKEY W.D., MILLER H.J., SIKORSKI J., WILKINS M., Thoracic response and injury with belt, driver side airbag, and force limited belt restraint systems, Int. J. Crashworthiness, 1997, 2 (1), 119–132.
[13] CURREY J.D., BUTLER G., The mechanical properties of bone tissue in children, J Bone Joint Surg. Am., 1975, 57, 810–814.
[14] ERKULA G., SPONSELLER P.D., KITER A.E., Rib deformity in scoliosis, Eur. Spine J., 2003, 12, 281–287.
[15] FLAGEL B.T., LUCHETTE F.A., REED R.L., ESPOSITO T.J., DAVIS K.A., SANTANIELLO J.M., GAMELLI R.L., Half-a-dozen ribs: The breakpoint for mortality, Surgery, 2005, 138(4), 717–727.
[16] GRANIK G., STEIN I., Human ribs: static testing as a promising medical application, J. Biomech., 1973, 8, 237–240.
[17] ILHARREBORDE B., ZHAO K.D., BOUMEDIENE E., LAFON Y., ZHAO C.F., MITTON D., SKALLI W., AN K.N., Development of an experimental model of scoliosis bracing for validation of a trunk. Finite element model, 52nd Annual Meeting of the Orthopaedic Research Society, 2006.
[18] ISMAIL A.A., SILMAN A.J., REEVE J., KAPTOGE S., O’NEILL T.W., Rib fractures predict incident limb fractures: results from the European prospective osteoporosis study, Osteoporosis Int., 2006, 17, 41–45.
[19] KEMPER A., McNALLY C., KENNEDY E., RATH A., MANOOGIAN S., STITZEL J., DUMA S., Material properties of human rib cortical bone from dynamic tension coupon testing, Stapp Car Crash J., 2005, 49, 199–230.
[20] KEMPER A., McNALLY C., PULLINS C.A., FREEMAN L.J., DUMA S.M., The biomechanics of human ribs: material and structural properties from dynamic tension and bending test, Stapp Car Crash J., 2007, 51, 235–273.
[21] KENT R., HENARY B., MATSUOKA F., On the fatal crash experience of older drivers, Proc. AAAM., 2005a, 49, 371–391.
[22] KENT R., LEE S., DARVISH K., WANG S., POSTER C., LANGE A., BREDE C., LANGE D., MATSUOKA F., Structural and material changes in the aging thorax and their role in crash protection for older occupants, Stapp Car Crash J., 2005b, 49, 231–249.
[23] LI X.F., LI H., LIU Z.D., DAI L.Y., Low bone mineral status in adolescent idiopathic scoliosis, Eur. Spine J., 2008, 17, 1431–1440.
[24] LIMAN S.T., KUZUCU A., TASTEPE A.I., ULSAN G.N., TOPCU S., Chest injury due to blunt trauma, Eur. J. Cardiothorac. Surg., 2003, 23, 374–378.
[25] NIE W.Z., YE M., WANG Z.Y., Infinite models in scoliosis: a review of the literature and analysis of personal experience, Biomed. Tech., (Berl.), 2008, 53(4), 174–180.
[26] NIKODEM A., ŚCIGAŁA K., Impact of some external factors on the values of mechanical parameters determined in tests on bone tissue, Acta Bioeng. Biomech., 2010, 12(3), 85–93,
[27] PÉRIÉ D., AUBIN C.E., PETIT Y., LABELLE H., DANSEREAU J., Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis, Clin. Biomech., 2004, 19(2), 190–195.
[28] PLANK G.R., EPPINGER R.H., An improved finite element model of the human thorax, 13th International Technical Conference on Experimental Safety of Vehicles, 1991, 902–907.
[29] PLANK G.R., KLEINBERGER M., EPPINGER R.H., Finite element modeling and analysis of thorax/restraint system interaction, 14th International Technical Conference on the Enhanced Safety of Vehicles, 1994, 210–219.
[30] SACRESTE J., BRUN-CASSEN F., FAYON A., TARRIERE C., GOT C., PATEL A., Proposal for a thorax tolerance level in side impacts based on 62 tests performed with cadavers having known bone condition, SAE, 821157, 1982.
[31] SADAT-ALI M., AL-OTHMAN A., BUBSHAIT D., AL-DAKHEEL D., Does scoliosis cause low bone mass? A comparative study between siblings, Eur. Spine J., 2008, 17, 944–947.
[32] SAMARASEKERA S.P., MIKOCKA-WALUS A., BUTT W., CAMERON P., Epidemiology of major paediatric chest trauma, J. Paediatr. Child Health., 2009, 45, 676–680.
[33] SANDOZ B., LAPORTE S., CHARPAIL E., TROSSEILLE X., LAVASTE F., Influence of the velocity on human ribs response, J. Biomech., 2007, 4(1), S215–S215.
[34] SHEN W.X., LI X., AGRAWAL C.M., Age-related changes in the collagen network and toughness of bone, Bone, 2002, 31, 1–7.
[35] SIRMALI M., TURUT H., TOPCU S., GULHAN E., YAZICI U., KAYA S., TASTEPE I., A comprehensive analysis of traumatic rib fractures: morbidity, mortality and management, Eur. J. Cardiothorac. Surg., 2003, 24, 133–138.
[36] STEIN I., GRANIK G., Rib structure and bending strength: An autopsy study, Calcif. Tiss. Res., 1976, 20, 66–73.
[37] STITZEL J.D., CORMIER J.M., BARRETTA J.T., KENNEDY E.A., SMITH E.P., RATH A.L, DUMA S.M., Defining regional variation in the material properties of human rib cortical bone and its effect on fracture prediction, Stapp Car Crash J., 2003, 47, 243–265.
[38] SUK S.I., KIM J.H., KIM S.S., LEE J.J., HAN Y.T., Thoracoplasty in thoracic adolescent idiopathic scoliosis, Spine, 2008, 33(10), 1061–1067.
[39] WOOD J.L., Dynamic response of human cranial bone, J. Biomech., 1971, 4, 1–12.
[40] YOGANANDAN N., PINTAR F.A., Biomechanics of human thoracic ribs, J. Biomech. Eng., 1998, 120, 100–104.
[41] ZIOUPOS P., CURREY J.D., Changes in the stiffness, strength, and toughness of human cortical bone with age, Bone, 1998, 22, 57–66.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBD-0003-0007