Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Opposite effects of electroporation of red blood cell membranes under the influence of zinc ions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
The goal of the study was to investigate the effects of zinc ions of various concentrations on the nanostructure of membrane of red blood cells in in vitro experiment. The suspension of red blood cells extracted from whole human blood was used. The calibrated electroporation and the atomic force microscopy (AFM) were used to analyse damage to membrane nanostructure. We studied the haemolysis after the electroporation at different zinc concentrations. A low concentration of zinc (0.15-0.5 mM) increased significantly the rate of haemolysis and reduced the residual level of non-haemolyzed cells. At high concentrations of zinc ions (0.5-10 mM), the rate constant was sharply reduced, at the same time the residual level increased. The relationship between haemoglobin coagulants and the zinc concentration was examined. High concentration of zinc caused haemoglobin aggregation. It was shown by AFM that the membrane nanostructure was essentially changed. It was experimentally established that there existed a special point of zinc concentration C = 0.5 +- 0.1 mM at which the course of the conjugate processes on the membranes of red blood cells was changed.
Słowa kluczowe
Opis fizyczny
Bibliogr. 17 poz., rys.
  • V. A. Negovsky Scientific Research Institute of General Reanimatology, Russian Academy of Medical Sciences, Moscow, Russia,
  • [1] ALBERTS I.L., NADASSY K., WODAK S.J., Analysis of zinc binding sites in protein crystal structures, Protein Science, 1998, 7 (8), 1700–1716.
  • [2] TAYLOR C.G., McCUTCHON T.L., BOERMANS H.J., DiSILVESTRO R.A., BRAY T.M., Comparison of Zn and vitamin E for protection against hyperoxia-induced lung damage, Radic. Biol. Med., 1997, 22, 543–550.
  • [3] TRUONG-TRAN A.Q., CARTER J., RUFFIN R., ZALEWSKI P.D., New insights into the role of zinc in the respiratory epithelium, Immunology and Cell Biology, 2001, 79, 170–177.
  • [4] AKAHORI A., JOZWIAK Z., GABRYELAK T., GONDKO R., Effect of zinc on carp (Cyprinus carpio L.) erythrocytes, Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 1999, 123 (3), 209–215.
  • [5] ARNAUDOV A., VELCHEVA I., TOMOVA E., Changes in the erythrocytes indexes of Carassius gibelio (Pisces, Cyprinidae) under the influence of zinc, Biotechnol. & Biotechnol. EQ., 2009, 23, 167–169.
  • [6] BEXFIELD N., ARCHER J., HERRTAGE M., Heinz body haemolytic anaemia in a dog secondary to ingestion of a zinc toy: A case report, Vet. J., 2007, 174 (2), 414–417.
  • [7] TURRINI F., MANNU F., ARESE P., YUAN J., LOW P.S., Characterization of the autologous antibodies that opsonize erythrocytes with clustered integral membrane proteins, Blood, 1993, 81 (11), 3146–3152.
  • [8] WALDER J.A., CHATTERJEE R., STECK T.L., LOW P.S., MUSSO G.F., KAISER E.T., ROGERS P.H., ARNONE A., The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane, The Journal of Biological Chemistry, 1984, 259 (16), 10238–10246.
  • [9] KHROMOVA V.S., MYSHKIN A.E., Coagulation of zincmodified hemoglobin, Russian Journal of General Chemistry, 2002, 72 (10), 1645–1649.
  • [10] CHERNYSH A.M., KOZLOVA E.K., MOROZ V.V., BORSHAGOVSKAYA P.Y., BLIZNUK U.A., RYSAEVA R.M., Erythrocyte membrane surface after calibrated electroporation: visualization by atomic force microscopy, Bull. Exp. Biol. Med., 2009, 148 (3), 455–460.
  • [11] MOROZ V.V., CHERNYSH A.M., KOZLOVA E.K., BORSHAGOVSKAYA P.Y., BLIZNUK U.A., RYSAEVA R.M., GUDKOVA O.Y.E., Comparison of red blood cell membrane microstructure after different physicochemical influences: Atomic force microscope research, Journal of Critical Care, 2010, 25(3), 539.e1–12.
  • [12] MOROZ V.V., KIRSANOVA A.K., NOVODERGKINA I.S., ALEXANDRIN V.V., CHERNYSH A.M., KOZLOVA E.K., Macro and microstructure of erythrocyte membranes under acute massive hemorrhage and subsequent blood reinfusion, Seminars in cardiothoracic and vascular anesthesia, 2010, 14(4), 248–255.
  • [13] GIRASOLE M., GIULIANO P., CRICENTI A., LONGO G., BOUMIS G., BELLELLI A., AMICONI S., The how, when, and why of the aging signals appearing on the human erythrocyte membrane: an atomic force microscopy study of surface roughness, Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 760–768.
  • [14] PARK Y., BEST C.A., AUTH T., GOV N.S., SAFRAN S.A., POPESCU G., SURESH S., FELD M.S., Metabolic remodeling of the human red blood cell membrane, PNAS, 2010, 107(4), 1289–1294.
  • [15] KOZLOVA E.K., CHERNIAEV A.P., ALEKSEEVA P.Y., BLIZNIUK U.A., CHERNYSH A.M., NAZAROVA M.A., The diagnostic of membranes’ state after exposure of gammaradiation of small doses, Radiats. Biol. Radioecol., 2005, 45(6), 653–656.
  • [16] KOZLOVA E.K., CHERNYAEV A.P., ALEKSEEVA P.Y., CHERNYSH A.M., DOLGOPOLOVA A.A., NAZAROVA M.A., Diagnostics of hidden damage in biological membrane under exposure to low-dose gamma-radiation, Moscow University Physics Bulletin C/C Of Vestnik- Moskovskii Universitet Fizika I Astronomiia , 2005, 60 (6), 18–21.
  • [17] MI X.Q., CHEN J.Y., ZHOU L.W., Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane, Journal of Photochemistry and Photobiology B: Biology, 2006, 83(2), 146–150.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.