Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

Finite element modelling of the articular disc behaviour of the temporo-mandibular joint under dynamic loads

Autorzy Jaisson, M.  Lestriez, P.  Taiar, R.  Debray, K. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The proposed biodynamic model of the articular disc joint has the ability to affect directly the complete chewing mechanism process and its related muscles defining its kinematics. When subjected to stresses from the mastication muscles, the disc absorbs one part and redistributes the other to become completely distorted. To develop a realistic model of this intricate joint a CT scan and MRI images from a patient were obtained to create sections (layers) and MRI images to create an anatomical joint CAD model, and its corresponding mesh element using a finite element method. The boundary conditions are described by the external forces applied to the joint model through a decomposition of the maximum muscular force developed by the same individual. In this study, the maximum force was operating at frequencies close to the actual chewing frequency measured through a cyclic loading condition. The reaction force at the glenoid fossa was found to be around 1035 N and is directly related to the frequency of indentation. It is also shown that over the years the areas of maximum stresses are located at the lateral portion of the disc and on its posterior rim. These forces can reach 13.2 MPa after a period of 32 seconds (s) at a frequency of 0.5 Hz. An important part of this study is to highlight resilience and the areas where stresses are at their maximum. This study provides a novel approach to improve the understanding of this complex joint, as well as to assess the different pathologies associated with the disc disease that would be difficult to study otherwise.
Słowa kluczowe
PL biomechanika   płyta stawowa   żucie   sprężystość   stawy skroniowo-żuchwowe   siła mięśni   obrazowanie 3D   analiza elementów skończonych  
EN biomechanics   articular disc   chewing   resilience   temporo-mandibular joints   muscle forces   3D imaging   finite element analysis  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2011
Tom Vol. 13, nr 4
Strony 85--91
Opis fizyczny Bibliogr. 28 poz., rys.
autor Jaisson, M.
autor Lestriez, P.
autor Taiar, R.
autor Debray, K.
  • UFR Odontologie - UFR Sciences Exactes et Naturelles - REIMS, France
[1] AZERAD J., Physiologie de la manducation, Paris, 1992.
[2] KATO T., ROMPRE P., MONTPLAISIR J.Y., SESSLE B.J., LAVIGNE G.J., Sleep bruxism: an oromotor activity secondary to micro-arousal, J. Dent. Res., 2001, 80, 1940–1944.
[3] CHU S., SUVINEN T., CLEMENT J., READE P., The effect of interocclusal appliances on temporo-mandibular joints as assessed by 3D reconstruction of MRI scans, Aust. Dent. J., 2001, 46, 18–23.
[4] MILAM S.B., TMDs, an evidence based approach to diagnosis and treatment, Quintessence Publishing Co, 2006, 105–123.
[5] CHEN J., AKYUZ U., XU L., PIDAPARTI R., Stress analysis of the human temporo-mandibular joint, Med. Eng. Phys., 1998, 20, 565–572.
[6] DEL POZO R. et al., Influence of friction at articular surfaces of the temporo-mandibular joint on stresses in the articular disc: a theoretical approach with the finite element method, Angle Orthodontist, 2003, 3, 319–327.
[7] PRICE C., CONNELL D.G., MAC KAY A., TOBIAS D.L., Threedimensional reconstruction of magnetic resonance images of the temporo-mandibular joint by I-DEAS, Dentomaxillofac. Radiol., 1992, 21, 148–153.
[8] TANAKA E. et al., Three-dimensional finite element analysis of human temporo-mandibular joint with and without disc displacement during jaw opening, Med. Eng. Phys., 2004, 26, 503–511.
[9] TANAKA E. et al., Stress analysis in the TMJ during jaw opening by use of a three-dimensional finite element model based on magnetic resonance images, Int. J. Oral Maxillofac. Surg., 2001, 30, 421–430.
[10] TANAKA E., TANNE K., SAKUDA M., A three-dimensional finite element model of the mandibule including the TMJ and its application to stress analysis in the TMJ during clenching, Med. Eng. Phys., 1994, 16, 316–322.
[11] LIU Z., FAN Y., QIAN Y., Comparative evaluation on threedimensional finite element models of the temporomandibular joint, Clinical Biomechanics, 2008, 23, 53–58.
[12] CHU S., SKULTETY K., SUVINEN T., CLEMENT J., PRICE C., Computerized three-dimensional magnetic resonance imaging reconstructions of temporo-mandibular joints for both a model and patients with temporo-mandibular pain dysfunction, Oral Pathol. Oral Radiol. Endod., 1995, 80, 604–611.
[13] CHIRANI R.A., JACQ J.J., MERIOT P., ROUX C., Temporomandibular joint: a methodology of magnetic resonance imaging 3-D reconstruction, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2004, 97, 756–761.
[14] KITAI N., ERIKSSON L., KREIBORG S., WAGNER A., TAKADA K., Three-dimensional reconstruction of TMJ MRI: a technical note and case report, Cranio, 2004, 22, 77–81.
[15] KITAI N., KREIBORG S., MURAKAMI S., BAKKE M., MOLLER E., A three-dimensional method of visualizing the temporo-mandibular joint based on magnetic resonance imaginng in a case of juvenile chronic arthritis, Int. J. Paediatr. Dent., 2002, 12, 109–115.
[16] LEADER J.K., BOSTON J.R., DEBSKI R.E., RUDY T.E., Mandibular kinematics represented by a non-orthogonal floating axis joint coordinate system, J. of Biomechanics, 2003, 36,275–281.
[17] NAGAHARA K., MURATA S., NAKAMURA S., TSUCHIYA T., Displacement and stress distribution in the temporo-mandibular joint during clenching, Angle Orthod., 1999, 69, 372–379.
[18] BEEK M., AARNTS M.P., KOOLSTRA J.H., FEILZER A.J., von EIJDEN T.M.G.J., Dynamical properties of the human temporo-mandibular joint disc, J. Dent. Res., 2001, 876–880.
[19] MEYER C., KAHN J.L., BOUTEMI P., WILK A., Méthodologie proposée pour la détermination des forces externes s’appliquant sur la mandibule au cours de la mastication, Rev. Stomatol. Chir. maxillofac. sup., 1998, 1, 79–85.
[20] BRAVETTI P., Histologie de l’ATM et des muscles masticateurs, 2006.
[21] BUMANN A., LOTZMANN U., Color Atlas of Dental Medecine, TMJ Disorders and Orofacial Pain, The Role of Dentistry in a Multidisciplinary Diagnostic Approach, K.H. Rateitschak, H.E. Wolf (Eds.).
[22] TANAKA E., Stress distributions in the TMJ during clenching, J. Osaka Univ. Dent. Soc., 1993, 38, 131–160.
[23] PEREZ DEL PALOMAR A., DOBLARE M., The effect of collagen reinforcement in the behaviour of the temporomandibular joint disc, Journal of Biomechanics, 2006, 39, 1075–1085.
[24] SUH J.K., SPLIKER R.L., HOLMES M.R., A penalty finite element analysis for non-linear mechanics of biphasic hydrated soft tissue under large deformation, International Journal for Numerical Methods in Engineering, 1991, 32, 1411–1439.
[25] TUIJT M., KOOLSTRA J.M., LOBBEZOO F., NAEIJE M., Differences in loading of the temporomandibular joint during opening and closing of the jaw, Journal of Biomechanics, 2010, 43, 1048–1054.
[26] CAMPARIS C.M., FORMIGONI G., TEIXEIRA M.J., BITTENCOURT L.R.A., Sleep bruxism and temporo-mandibular disorder: Clinical and polysomnographic evaluation, Archives of Oral Biology, 2006, 51, 721–728.
[27] ORTHLIEB J.D., BROCHARD D., SCHITTLY J., MANIERE-EZVAN A., Occlusodontie pratique, Lavoisier, 2010.
[28] KERSTEIN R.B., LOWE M., HARTY M., RADKE J., A force reproduction analysis of two recording sensors of a computerized occlusal analysis system, Journal of Craniomandibular Practice, 2006, 24, 15–24.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBB-0006-0046