Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

Numerical model of the human cervical spinal cord - the development and validation

Autorzy Czyż, M.  Ścigała, K.  Jarmundowicz, W.  Będziński, R. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The influence of mechanical load on the extent of nervous tissue damage in the spinal cord at the time of trauma is presently incontestable. Although numerical modelling cannot fully replace physical testing, it seems to be the perfect complement to experiments in terms of the analysis of such a complex phenomenon as traumatic spinal cord injury. Previous numerical models of the human cervical spinal cord have been limited by several factors: two-dimensional modelling, spinal cord geometry simplification and incomplete reflection of specific anatomical and biomechanical relations of the objects being modelled. The objective of this study was to develop and validate an accurate and universal numerical Finite Element Method (FEM) model of the human cervical spinal cord. Our survey focuses mainly on geometric, constraint and material aspects. Experimental validation was carried out based on a controlled compression of the porcine spinal cord specimens. Each stage of compression was simulated using the FEM model of the compressed segment. Our 3D numerical simulation results compared with experimental results show a good agreement. It is possible to use the developed numerical model of the human cervical spinal cord in the biomechanical analysis of the spinal cord injury phenomenon. However, further clinical evaluation is clearly justified.
Słowa kluczowe
PL modelowanie 3D   szyjny rdzeń kręgowy   weryfikacja doświadczalna   metoda elementów skończonych (MES)  
EN 3D modelling   cervical spinal cord injury   experimental validation   Finite Element Method (FEM)  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2011
Tom Vol. 13, nr 4
Strony 51--58
Opis fizyczny BIbliogr. 29 poz., rys., tab.
autor Czyż, M.
autor Ścigała, K.
autor Jarmundowicz, W.
autor Będziński, R.
[1] LI X.F., DAI L.Y., Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis, Spine (Phila Pa 1976), 2009, 34(11), 1140–1147.
[2] SHARMA H.S., Pathophysiology of blood–spinal cord barrier in traumatic injury and repair, Curr. Pharm. Des., 2005, 11(11), 1353–1389.
[3] MAIKOS J.T., SHREIBER D.I., Immediate damage to the blood–spinal cord barrier due to mechanical trauma, J. Neurotrauma, 2007, 24(3), 492–507.
[4] PANJABI M.M., SHIN E.K., CHEN N.C., WANG J.L., Internal morphology of human cervical pedicles, Spine (Phila Pa 1976), 2000, 25(10), 1197–1205.
[5] ICHIHARA K., TAGUCHI T., SAKURAMOTO I., KAWANO S., KAWAI S., Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and gray matter, J. Neurosurg., 2003, 99(3 Suppl), 278–285.
[6] BERTRAM C.D., BILSTON L.E., STOODLEY M.A., Tensile radial stress in the spinal cord related to arachnoiditis or tethering: a numerical model, Med. Biol. Eng. Comput., 2008, 46(7), 701–707.
[7] WILCOX R.K., ALLEN D.J., HALL R.M., LIMB D., BARTON D.C., DICKSON R.A., A dynamic investigation of the burst fracture process using a combined experimental and finite element approach, Eur. Spine J., 2004, 13(6), 481–488.
[8] WILCOX R.K., BOERGER T.O., ALLEN D.J., BARTON D.C., LIMB D., DICKSON R.A., HALL R.M., A dynamic study of thoracolumbar burst fractures, J. Bone Joint Surg. Am., 2003, 85-A(11), 2184–2189.
[9] BASS C.R., LUCAS S.R., SALZAR R.S., OYEN M.L., PLANCHAK C., SHENDER B.S., PASKOFF G., Failure properties of cervical spinal ligaments under fast strain rate deformations, Spine (Phila Pa 1976), 2007, 32(1), E7–13.
[10] KERR J., RATIU P., SELLBERG M., Volume rendering of visible human data for an anatomical virtual environment, Stud. Health Technol. Inform., 1996, 29, 352–370.
[11] TUBBS R.S., SALTER G., GRABB P.A., OAKES W.J., The denticulate ligament: anatomy and functional significance, J. Neurosurg., 2001, 94(2 Suppl), 271–275.
[12] STOLTMANN H.F., BLACKWOOD W., An anatomical study of the role of the dentate ligaments in the cervical spinal canal, J. Neurosurg., 1966, 24(1), 43–46.
[13] WELLER R.O., Microscopic morphology and histology of the human meninges, Morphologie, 2005, 89(284), 22–34.
[14] ICHIHARA K., TAGUCHI T., SHIMADA Y., SAKURAMOTO I., KAWANO S., KAWAI S., Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter, J. Neurotrauma, 2001, 18(3), 361–367.
[15] ŚCIGAŁA K., PALECZNY A., CZYŻ M., BĘDZIŃSKI R., JARMUNDOWICZ W., Investigations of pia mater and dura mater mechanical properties anisotropy and non-homogeneity, WFNS XIV Congress of Neurosurger., Boston, 2009, 1236.
[16] NICHOLAS D.S., WELLER R.O., The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study, J. Neurosurg., 1988, 69(2), 276–282.
[17] TUNTURI A.R., Elasticity of the spinal cord, pia, and denticulate ligament in the dog, J. Neurosurg., 1978, 48(6), 975–979.
[18] SWARTZ E.E., FLOYD R.T., CENDOMA M., Cervical spine functional anatomy and the biomechanics of injury due to compressive loading, J. Athl. Train., 2005, 40(3), 155–161.
[19] YOGANANDAN N., KUMARESAN S., VOO L., PINTAR F.A., Finite element applications in human cervical spine modeling, Spine (Phila Pa 1976), 1996, 21(15), 1824–1834.
[20] OZAWA H., MATSUMOTO T., OHASHI T., SATO M., KOKUBUN S., Mechanical properties and function of the spinal pia mater, J. Neurosurg. Spine, 2004, 1(1), 122–127.
[21] MAUTES A.E., WEINZIERL M.R., DONOVAN F., NOBLE L.J., Vascular events after spinal cord injury: contribution to secondary pathogenesis, Phys. Ther., 2000, 80(7), 673–687.
[22] MAIKOS J.T., QIAN Z., METAXAS D., SHREIBER D.I., Finite element analysis of spinal cord injury in the rat, J. Neurotrauma, 2008, 25(7), 795–816.
[23] SPARREY C.J., KEAVENY T.M., The effect of flash freezing on variability in spinal cord compression behavior, J. Biomech. Eng., 2009, 131(11), 111010.
[24] BILSTON L.E., THIBAULT L.E., The mechanical properties of the human cervical spinal cord in vitro, Ann. Biomed. Eng., 1996, 24(1), 67–74.
[25] SPARREY C.J., KEAVENY T.M., Compression behavior of porcine spinal cord white matter, J. Biomech., 2011, 44(6), 1078–1082.
[26] CZYŻ M., ŚCIGAŁA K., JARMUNDOWICZ W., BĘDZIŃSKI R., The biomechanical analysis of the traumatic cervical spinal cord injury using finite element approach, Acta Bioeng. Biomech., 2008, 10(1), 43–54.
[27] GREAVES C.Y., GADALA M.S., OXLAND T.R., A threedimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms, Ann. Biomed. Eng., 2008, 36(3), 396–405.
[28] WILCOX R.K., BILSTON L.E., BARTON D.C., HALL R.M., Mathematical model for the viscoelastic properties of dura mater, J. Orthop. Sci., 2003, 8(3), 432–434.
[29] HARRISON D.D., JANIK T.J., TROYANOVICH S.J., HOLLAND B., Comparisons of lordotic cervical spine curvatures to a theoretical ideal model of the static sagittal cervical spine, Spine (Phila Pa 1976), 1996, 21(6), 667–675.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBB-0006-0041