Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

Mathematical study on the guidance of the tibiofemoral joint as theoretical background for total knee replacements

Autorzy Fiedler, Ch.  Gezzi, R.  Frosch, K.-H.  Wachowski, M.M.  Kubein-Meesenburg, D.  Dörner, J.  Fanghänel, J.  Nägerl, H. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The mathematical approach presented allows main features of kinematics and force transfer in the loaded natural tibiofemoral joint (TFJ) or in loaded knee endoprostheses with asymmetric condyles to be deduced from the spatial curvature morphology of the articulating surfaces. The mathematical considerations provide the theoretical background for the development of total knee replacements (TKR) which closely reproduce biomechanical features of the natural TFJ. The model demonstrates that in flexion/extension such kinematic features as centrodes or slip ratios can be implemented in distinct curvature designs of the contact trajectories in such a way that they conform to the kinematics of the natural TFJ in close approximation. Especially the natural roll back in the stance phase during gait can be reproduced. Any external compressive force system, applied to the TFJ or the TKR, produces two joint reaction forces which - when applying screw theory - represent a force wrench. It consists of a force featuring a distinct spatial location of its line and a torque parallel to it. The dependence of the geometrical configuration of the force wrench on flexion angle, lateral/medial distribution of the joint forces, and design of the slopes of the tuberculum intercondylare is calculated. The mathematical considerations give strong hints about TKR design and show how main biomechanical features of the natural TFJ can be reproduced.
Słowa kluczowe
PL wspólny tibiofemoral   projekt TKR   chwilowa oś obrotu   współczynnik poślizgu   wspólny rozdział siły   powiązanie 4-barowe  
EN tibiofemoral joint   design of TKR   instantaneous rotational axis   slip ratio   joint force distribution   force wrench   four-bar linkage  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2011
Tom Vol. 13, nr 4
Strony 37--49
Opis fizyczny Bibliogr. 31 poz., rys., tab.
autor Fiedler, Ch.
autor Gezzi, R.
autor Frosch, K.-H.
autor Wachowski, M.M.
autor Kubein-Meesenburg, D.
autor Dörner, J.
autor Fanghänel, J.
autor Nägerl, H.
  • Joint Biomechanical Working Group, Göttingen, Regensburg, Germany
[1] BAUMGARTL E., Das Kniegelenk, Springer Verlag, Berlin 1964.
[2] WEBER W., WEBER F., Mechanik der menschlichen Gehwerkzeuge, Göttingen, Translated by Maquet P. and Furlong R. (1992): Mechanics of the human walking apparatus. Section 4: On the knee, Springer Verlag, Berlin, 1992.
[3] FISCHER O., Kinematik organischer Gelenke, Vieweg-Verlag, Braunschweig, 1907.
[4] ZUPPINGER H., Die active Flexion im unbelasteten Kniegelenk, Züricher Habil Schriften Bergmann Verlag, Wiesbaden, 1904.
[5] STRASSER H., Lehrbuch der Muskel- und Gelenkmechanik. Vol. III: Special section entitled: Die untere Extremität, Springer Verlag, Berlin, 1917.
[6] HUSON A., The functional anatomy of the knee joint: the closed kinematic chain as a model of the knee joint, Proc. Int. Congr, 1973 (334), 163.
[7] HUSON A., Biomechanische Probleme des Kniegelenks, Orthopädie, 1974, 3, 19.
[8] MENSCHIK A., Mechanik des Kniegelenkes, 1. Teil. Z. Orthop., 1974, 112, 481.
[9] MENSCHIK A., Mechanik des Kniegelenkes, 2. Teil Schlußrotation, Z. Orthop., 1975, 113, 388.
[10] KUBEIN-MEESENBURG D., NÄGERL H., COTTA H., FANGHÄHNEL J., Biomechanische Prinzipien in Diarthrosen und Synarthosen, Teil I. Grundbegriffe bei Diarthrosen, Z. Orthop., 1993, 131, 97.
[11] KUBEIN-MEESENBURG D., NÄGERL H., FANGHÄHNEL J., Elements of a general theory of joints: 1. Basic kinematic and static function of diarthrosis, Anat. Anz., 1990, 170, 301.
[12] NÄGERL H., KUBEIN-MEESENBURG D., COTTA H., FANGHÄHNEL J., Biomechanische Prinzipien in Diarthrosen und Synarthosen, Teil III. Mechanik des Tibiofemoralgelenkes und Rolle der Kreuzbänder, Z. Orthop., 1993, 131, 385.
[13] NÄGERL H., KUBEIN-MEESENBURG D., MIEHE B., FANGHÄNEL J., The sensory apparatus for perception in the tibiofemoral joint and outlines of a functional knee endoprosthesis, Acta of Bioengineering and Biomechanics, 2002, 4, Suppl. 1, 319.
[14] ZATSIORSKY V.M., Kinematics of Human Motion, Human Kinetics Publisher, Champaign, Illinois, 1998.
[15] BALL R.S., The theory of screws: A study in the dynamics of a rigid body, Hodges, Foster, Dublin, 1876.
[16] TIMBERDING H.E., Geometrie der Kräfte, Teubner, Leipzig, 1908.
[17] YANG A.T., Calculus of screws, [in:] Basic Questions of Design Theory, W.R. Spillers (editor), Elsevier, 1974, 266–281.
[18] IWAKI H., PINSKEROVA V., FREEMAN M., Tibiofemoral movement 1: The shapes and relative movements of the femur and tibia in the unloaded cadaver knee, The Journal of Bone and Joint Surgery (BR), 2000, 82B, 1189.
[19] PINSKEROVA V., IWAKI A., FREEMAN M., The shapes and relative movements of the femur and tibia in the unloaded cadaveric knee: A study using MRI as an anatomical tool, [in:] N. Insall (Hrsg.), R. Scot (Hrsg.), W.B. Saunders (Hrsg.), Surgery of the knee, third edition, 2001.
[20] PINSKEROVA V., JOHAL P., NAKAGAWA S., SOSNA A., WILLIAMS A., GEDROYC W., FREEMAN M., Does the femur roll back with flexion? The Journal of Bone and Joint Surgery, 2004, BR 86-B, 925.
[21] NÄGERL H., WALTERS J., FROSCH K.-H., DUMONT C., KUBEIN-MEESENBURG D., FANGHÄNEL J., WACHOWSKI M.M., Knee motion analysis of the non-loaded and loaded knee: a re-look at rolling and sliding, Journal of Physiology and Pharmacology, 2009, 60, Suppl. 8, 69.
[22] WALKER P.S., HAJEK J.V., The load bearing area on the knee joint, Journal of Biomechanics, 1972, Vol. 5, 581–589.
[23] WISMANS J., VELDPAUS F., JANSSEN J., HUSON A., STRUBEN P., A three-dimensional mathematical model of the knee joint, J. Biomechanics, 1980, 13, p. 677–85.
[24] KOH J., GRABINER D., SWART D. de, In vivo tracking of the human patella, J. Biomechanics, 1991, 25, p. 637.
[25] FROSCH K.-H., FLOERKEMEIER T., ABICHT C., ADAM P., DATHE H., FANGHÄNEL J., STÜRMER K.M., KUBEINMEESENBURG D., NÄGERL H., Eine neuartige Knieendoprothese mit physiologischer Gelenkform. Teil 1: Biomechanisch Grundlagen und tribologische Untersuchungen, Unfallchirurg., 2009a, 112, 168–175.
[26] FROSCH K.-H., NÄGERL H., KUBEIN-MEESENBURG D., DÖRNER J., DATHE H., HELLERER O., DUMONT C., STÜRMER K.M., Eine neuartige Knieendoprothese mit physiologischer Gelenkform. Teil 2: Erste klinische Ergebnisse, Unfallchirurg., 2009b, 112, 176–184.
[27] NÄGERL H., FROSCH K.-H., WACHOWSKI M.M., DUMONT C., ABICHT C., ADAM P., KUBEIN-MEESENBURG D., A novel total knee replacement by rolling articulatings surfaces. In vivo functional measurements and tests, Acta Bioeng. Biomech., 2008, 10, 55.
[28] HISS E., SCHWERBOCK B., Untersuchungen zur räumlichen Form der Femurkondylen, Z. Orthop., 1980, 118, 396.
[29] HAIN K., Angewandte Getriebelehre, Hermann Schroedel Verlag K.G., Hannover, Darmstadt, 1952.
[30] WACHOWSKI M.M., FIEDLER C., WALDE T.A., BALCAREK P., SCHÜTTRUMPF J.P., FROSCH S., FROSCH K.-H., FANGHÄNEL J., GEZZI R., KUBEIN-MEESENBURG D., NÄGERL H., Constructionconditioned rollback in total knee replacement: fluoroscopic results, Acta Bioeng. Biomech., 2011, 13(3), 35–42.
[31] KAPANDJI I.A., Funktionelle Anatomie der Gelenke. Band 2: UntereExtremität, Ferdinand Enke Verlag, Stuttgart, 1985, 142.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBB-0006-0040