Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

Mechanical, biological, and microstructural properties of biodegradable models of polymeric stents made of PLLA and alginate fibers

Autorzy Bartkowiak-Jowsa, M.  Będziński, R.  Szaraniec, B.  Chłopek, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Due to lack of effective methods for preventing the complications associated with stent implantation, the search for new solutions is conducted, including those based on the use of biodegradable polymers. Such materials could allow us to develop a temporary implant that would ensure flow in the vessel until its regeneration, while minimising the negative effects connected with long--erm implant–tissue interaction. In this study, models in the form of biodegradable stents of different materials and geometry were prepared. Due to the fact that one of the basic requirements imposed on vascular stents is the ability to resist radial loads caused by the surrounding tissue, the maximum radial forces causing destruction of prepared models were investigated. The results were compared with the values obtained for commercially used metallic implants. Models were also incubated in Eagle's medium enriched with albumin in order to assess potential adhesion capacity of proteins on their surface. Scanning electron microscope enabled monitoring of microstructural changes during incubation. The results obtained were used to evaluate the ability to obtain a functional, biodegradable vascular stent.
Słowa kluczowe
PL moc   biodegradacja stentu   siła promieniowa   właściwości mechaniczne   właściwości biologiczne   struktura polimerowa  
EN power   biodegradable stent   radial strength   mechanical properties   biological properties   polymer structure  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2011
Tom Vol. 13, nr 4
Strony 21--28
Opis fizyczny Bibliogr. 31 poz., rys., tab.
autor Bartkowiak-Jowsa, M.
autor Będziński, R.
autor Szaraniec, B.
autor Chłopek, J.
[1] OKURA H., SHIMODOZONO S., HAYASE M., BONNEAU H.N., YOCK P.G., FITZGERALD P.J., Impact of deep vessel wall injury and vessel stretching on subsequent arterial remodeling after balloon angioplasty: A serial intravascular ultrasound study, Am. Heart J., 2002, 144(2), 323–328.
[2] KOZIŃSKI M., SUKIENNIK A., RYCHTER M., KUBICA J., SINKIEWICZ W., Restenosis after coronary angioplasty: Pathomechanism and potential targets for therapeutic intervention. Focus on inflammation, Postępy Hig. Med. Dośw. (online), 2007, 61, 58–73.
[3] SIGWART U., Ten years of stenting: What next?, Interventional Cardiology, 1997, 3, 195–205.
[4] ELTCHANINOFF H., KONING R., TRON C., GUPTA V., CRIBIER A., Balloon angioplasty for the treatment of coronary instent restenosis: immediate results and 6-month angiographic recurrent restenosis rate, Am. Coll. Cardiol., 1998, 32, 980–984.
[5] SCHIELE T.M., Current understanding of coronary in-stent restenosis. Pathophysiology, clinical presentation, diagnostic work-up, and management, Z. Kardiol., 2005, 94, 772–790.
[6] GRYGIER D., KUROPKA P., DUDZIŃSKI W., Microscopic and histological analysis of the processes occurring in the aperture and wall of a coronary vessel after stent implantation, Acta of Bioengineering and Biomechanics, 2008, 3, 55–60.
[7] KORNOWSKI R., HONG M.K., FERMIN O., BRAMWELL O., WU H., LEON M.B., In-stent restenosis: Contributions of inflammatory responses and arterial injury to neointimal hyperplasia, J. Am. Coll. Cardiol., 1998, 31, 224–30.
[8] KÖSTER R., VIELUF D., KIEHN M., SOMMERAUER M., KÄHLER J., BALDUS S., MEINERTZ T., HAMM C.W, Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis, The Lancet, 2000, 356 (9245).
[9] GRYGIER D., KRZAK-ROŚ J., DUDZIŃSKI W., Application of sol-gel thin layers, Vacuum and Plasma Surface Engineering, Hejnice–Liberec, 2006.
[10] DUBEL G.J., Angioplasty Balloons, Stents, and Endografts, Saunders Company, 2000.
[11] COLOMBO A., STANKOVIC G., MOSES J.W., Selection of coronary stents, Journal of the American College of Cardiology, 2002, 40, 1021–1033.
[12] BARTKOWIAK M., BĘDZIŃSKI R., FILIPIAK J., CHŁOPEK J., Badania wstępne nad doborem materiałów biodegradowalnych na stent naczyniowy, Inżynieria biomateriałów, 2008, 77–80, 60–62.
[13] PEUSTER M., WOHLSEIN P., BRÜGMANN M., EHLERDING M., SEIDLER K., FINK C., BRAUER H., FISCHER A., HAUSDORF G., A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal – results 6–18 months after implantation into New Zealand white rabbits, Heart, 2001, 86, 563–569.
[14] PEUSTER M., HESSE C., SCHLOO T., FINK C., BEERBAUM P., von SCHNAKENBURG C., Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta, Biomaterials, 2006, 27, 4955–4962.
[15] MARIO C.D., GRIFFITHS H., GOKTEKIN O., PEETERS N., VERBIST J., BOSIERS M., DELOOSE K., HEUBLEIN B., ROHDE R., KASESE V., ILSLEY CH., ERBEL R., Drug-eluting biodegradable magnesium stent, Journal of Interventional Cardiology, 2004, 6, 391–395.
[16] STACK R.E., CALIFF R.M., PHILLIPS H.R. et al., Interventional cardiac catheterization at Duke Medical Center, The American Journal of Cardiology, 1988, 62, 3F–24F.
[17] TAMAI H., IGAKI K., KYO E., et al., Initial and 6-month results of biodegradable poly-L-lactic acid coronary stents in humans, Circulation, 2000, 102, 399–404.
[18] TAMAI H., IGAKI K. et al., One year follow-up biodegradable self-expanding stent implantation in humans, Journal of the American College of Cardiology, 2001, 37.
[19] HIETALA E.M., SALMINEN U.S., STAHLS A., VALIMAA T., MAASILTA P., TORMALA P., NIEMINEN M.S., HARJULA A.L.J., Biodegradation of the copolymeric polylactide stent longterm follow-up in a rabbit aorta model, Journal of Vascular Research, 2001, 38, 361–369.
[20] LAUTO A., OHEBSHALOM M., ESPOSITO M., MINGIN J., FELSEN D., GOLDSTEIN M., POPPAS D.P., Self-expandable chitosan stent: design and preparation, Biomaterials, 2001, 22, 1869–1874.
[21] UNVERDORBEN M., SPIELBERGER A., SCHYWALSKY M., LABAHN D., HARTWIG S., SCHNEIDER M., LOOTZ D., BEHREND D., SCHMITZ K., DEGENHARDT R., SCHALDACH M., VALLBRACHT C., A polyhydroxybutyrate biodegradable stent: Preliminary experience in the rabbit, Cardiovasc. Intervent. Radiol., 2002, 25, 127–132.
[22] VENKATRAMAN S., POHA T.L., VINALIAA T., MAKB K.H., BOEYA F., Collapse pressures of biodegradable stents, Biomaterials, 2003, 24, 2105–2111.
[23] SU S.H., NGUYEN T.K., SATASIYA P., GREILICH P.E., TANG L., EBERHART R.C., Curcumin impregnation improves the mechanical properties and reduces the inflammatory response associated with poly(L-lactic acid) fiber, Journal of Biomaterials Science, Polymer Edition, 2005, 3, 353–370.
[24] VOGT F., STEINA A., RETTEMEIERC G., KROTTB N., HOFFMANNA R., DAHLA J., BOSSERHOFFD A.K., MICHAELIC W., HANRATHA P., WEBERE C., BLINDTA R., Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent, European Heart Journal, 2004, 15, 1330–1340.
[25] ORMISTON J.A., SERRUYS P.W., REGAR E., DUDEK D., THUESEN L., WEBSTER M.W.I., ONUMA Y., GARCIA-GARCIA H.M., MCGREEVY R., VELDHOF S., A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial, Lancet, 2008, 371, 899–907.
[26] BARTKOWIAK-JOWSA M., BĘDZIŃSKI R., CHŁOPEK J., FILIPIAK J., SZARANIEC B., Comparative analysis of the deformation characteristics of biodegradable polymers considered as a material for vascular stents, Polymers, 2011, 56(3), 50–57.
[27] RIEU R., BARRAGAN P., MASSON C., FUSERI J., GARITEY V., SILVESTRI M., ROQUEBERT P., SAINSOUS J., Radial force of coronary stents: a comparative analysis, Catheter Cardiovasc. Interv., 1999, 46(3), 380–391.
[28] SAITO Y., MINAMI K., KOBAYASHI M., NAKAO Y., OMIYA H., IMAMURA H., SAKAIDA N., OKAMURA A., New tubular bioabsorbable knitted airway stent: Biocompatibility and mechanical strength, Journal of Thoracic and Cardiovascular Surgery, 2002, 123(1), 161–167.
[29] VALIMAAA T., LAAKSOVIRTA S., Degradation behaviour of self-reinforced 80L/20G PLGA devices in vitro, Biomaterials, 2004, 25(7/8), 1225–1232.
[30] GENNARO G., MÉNARD C., MICHAUD S.E., RIVARD A., Agedependent impairment of reendothelialization after arterial injury role of vascular endothelial growth factor, Circulation, 2003, 107, 230.
[31] HAKKARAINEN M., HÖGLUND A., ODELIUS K., ALBERTSSON A.C., Tuning the release rate of acidic degradation products through macromolecular design of caprolactone-based copolymers, J. Am. Chem. Soc., 2007, 19, 6308–6312.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBB-0006-0038