Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BPBB-0006-0037

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Microscale analysis of strain-stress state for TiN nanocoating of POLVAD and POLVAD_EXT

Autorzy Milenin, A.  Kopernik, M. 
Treść / Zawartość http://www.actabio.pwr.wroc.pl/acta.php
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The main purpose of the research was to develop the micromodel of biocompatible titanium nitride nanocoating deposited on polymer by pulsed laser deposition method in blood chambers of Polish ventricular assist devices: POLVAD and POLVAD_EXT. The analysis of the parameters of micromodel crucial for the phenomenon of loss of cohesion occurring between coating and substrate was carried out as well. The micromodel takes into account residual stress, material model of nanocoating, stress resulting from blood pressure in chamber, the thickness of coating and wave parameters of nanocoating (wavelength and antinode). The investigation shows that thickness and residual stress are the most influential parameters. The phenomenon of the loss of cohesion will be observed more frequently for thicker coatings with higher residual stresses.
Słowa kluczowe
PL polimer   metoda elementów skończonych (MES)   czynnik wielkości (RVE)   azotek tytanu (TiN)   urządzenie wspomagania lewej komory (VAD)   nanopowłoka  
EN polymer   finite element method (FEM)   representative volume element (RVE)   titanium nitride (TiN)   ventricular assist device (VAD)   nanocoating  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2011
Tom Vol. 13, nr 4
Strony 11--19
Opis fizyczny Bibliogr. 17 poz., rys., tab.
Twórcy
autor Milenin, A.
autor Kopernik, M.
  • AGH University of Science and Technology, Kraków
Bibliografia
[1] BENARDOS P.G., VOSNIAKOS G.-C., Predicting surface roughness in machining: a review, International Journal of Machine Tools and Manufacture, 2003, 43, 833–844.
[2] CHEN Y., FU P., ZHANG Ch., SHI M., Numerical simulation of laminar heat transfer in microchannels with rough surfaces characterized by fractal Cantor structures, International Journal of Heat and Fluid Flow, 2010, 31, 622–629.
[3] EBNER R., LACKNER J.M., WALDHAUSER W., MAJOR R., CZARNOWSKA E., KUSTOSZ R., LACKI P., MAJOR B., Biocompatibile TiN-based novel nanocrystalline films, Bulletin of the Polish Academy of Sciences, Technical Sciences, 2006, 54, 167–173.
[4] EL FRAY M., Elastomerowe biomateriały polimerowe o polepszonej odporności zmęczeniowej dla potrzeb protez serca, Biuletyn Programu Polskie Sztuczne Serce, 2011, 5, 18–23.
[5] GRZESIK W., BROL S., Hybrid approach to surface roughness evaluation in multistage machining processes, Journal of Materials Processing Technology, 2003, 134, 265–272.
[6] KANG M.Ch., KIM J.S., KIM K.H., Fractal dimension analysis of machined surface depending on coated tool wear, Surface and Coatings Technology, 2005, 193, 259–265.
[7] KOPERNIK M., MILENIN A., The sensitivity analysis of nanoindentation test for specimen composed of TiAlN and TiN using the mathematical model, Steel Research International, 2008, 79, 555–562.
[8] KOPERNIK M., MILENIN A., MAJOR R., LACKNER J.M., Identification of material model of TiN using numerical simulation of nanoindentation test, Materials Science and Technology, 2011, 27, 604–616.
[9] KRZANOWSKI W.J., Principles of multivariate analysis, Oxford University Press, New York, 2000.
[10] MILENIN A., KOPERNIK M., The multiscale FEM model of artificial heart chamber composed of nanocoatings, Acta of Bioengineering and Biomechanics, 2009, 11, 13–20.
[11] MILENIN A., KOPERNIK M., Comparative analysis of ventricle assist devices POLVAD and POLVAD_EXT based on multiscale FEM model, Acta of Bioengineering and Biomechanics, 13, 2011, 13–23.
[12] MILENIN A., KOPERNIK M., FEM code for the multi-scale simulation of the stress–strain state of the blood chamber composed of polyurethane and TiN nanocoating, Computer Methods in Materials Science, 2011, 11, 215–222.
[13] NALBANT M., GÖKKAYA H., TOKTAS I., SUR G., The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks, Robotics and Computer-Integrated Manufacturing, 2009, 25, 211–223.
[14] SARNA J., KUSTOSZ R., MAJOR R., LACKNER J.M., MAJOR B., Polish Artificial Heart – new coatings, technology, diagnostics, Bull. Pol. Ac. Tech., 2010, 58, 329–335.
[15] THIBAUX P., CHASTEL Y., CHAZE A.M., Finite element simulation of a two-phase viscoplastic material: calculation of the mechanical behaviour, Comput. Mater. Sci., 2000, 18, 118–125.
[16] WIKLUND U., GUNNARS J., HOGMARK S., Influence of residua stresses on fracture and delamination of thin hard coatings, Wear, 1999, 232, 262–269.
[17] ZIENKIEWICZ O.C., TAYLOR R.L., The finite element method, Butterworth–Heinemann, London, 2000.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBB-0006-0037
Identyfikatory