Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD

Autorzy Popa, C.V.  Zaidi, H.  Arfaoui, A.  Polidori, G.  Taiar, R.  Fohanno, S. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN This paper deals with the flow dynamics around a competitive swimmer during underwater glide phases occurring at the start and at every turn. The influence of the head position, namely lifted up, aligned and lowered, on the wall shear stress and the static pressure distributions is analyzed. The problem is considered as 3D and in steady hydrodynamic state. Three velocities (1.4 m/s, 2.2 m/s and 3.1 m/s) that correspond to inter-regional, national and international swimming levels are studied. The flow around the swimmer is assumed turbulent. The Reynolds-averaged Navier-Stokes (RANS) equations are solved with the standard k-u turbulent model by using the CFD (computational fluid dynamics) numerical method based on a volume control approach. Numerical simulations are carried out with the ANSYS FLUENTŽ CFD code. The results show that the wall shear stress increases with the velocity and consequently the drag force opposing the movement of the swimmer increases as well. Also, high wall shear stresses are observed in the areas where the body shape, globally rigid in form, presents complex surface geometries such as the head, shoulders, buttocks, heel and chest.
Słowa kluczowe
PL pływak   ściany naprężenia   ciśnienie statyczne   standardowy model turbulencji   obliczeniowa dynamika płynów  
EN swimmer   wall shear stress   static pressure   standard k–u turbulence model   CFD  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2011
Tom Vol. 13, nr 1
Strony 3--11
Opis fizyczny Bibliogr. 22 poz., rys.
autor Popa, C.V.
autor Zaidi, H.
autor Arfaoui, A.
autor Polidori, G.
autor Taiar, R.
autor Fohanno, S.
[1] HUIJING P.A., TOUSSAINT H.M., CLARYS J.P., de GROOT G., HOLLANDER A.P., VERVOORN K., MACKAY R., SAVELBERG H.H.C.M., Active drag related to body dimensions, [in:] B.E. Ungerechts, K. Reischle, K. Wilke (Eds.), In Swimming Science V. Human Kinetics Books, Champaign, Ill, 1988, 31–37.
[2] KOLMOGOROV S.V., DUPLISHCHEVA O.A., Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity, Journal of Biomechanics, 1992, Vol. 25, 311–318.
[3] TOUSSAINT H.M., de GROOT G., SAVELBERG H.H.C.M., VERVOORN K., HOLLANDER A.P., van INGEN SCHENAU G.J., Active drag related to velocity in male and female swimmers, Journal of Biomechanics, 1988, Vol. 21, 435–438.
[4] TOUSSAINT H.M., ROOS P.E., KOLMOGOROV S., The determination of drag in front crawl swimming, Journal of Biomechanics, 2004, Vol. 37, 1655–1663.
[5] TOUSSAINT H.M., TRUIJENS M., Biomechanical aspects of peak performance in human swimming, Journal of Animal Biology, 2005, Vol. 25, 17–40.
[6] ADKINS D., YAN Y.Y., CFD Simulation of fish-like body moving in viscous liquid, Journal of Bionic Engineering, 2006, Vol. 3(3), 147–153.
[7] KATO N., AYERS J., MORIKAWA H., Bio-mechanisms of Swimming and Flying, Springer-Verlag, Tokyo, 2004.
[8] SATO Y., HINO T., CFD simulation of flows around a swimmer in a prone glide position, Japanese Journal of Sciences in Swimming and Water Exercise, 2010, Vol. 13, No. 1, 1–9.
[9] MARINHO D.A., BARBOSA T.M., KJENDLIE P.L., MANTRIPRAGADA N., VILAS-BOAS J.P., MACHADO L., ALVES F.B., ROUBOA A.I., SILVA A.J., Modelling Hydrodynamic Drag in Swimming using Computational Fluid Dynamics, Computational Fluid Dynamics, Hyoung Woo Oh (Ed.), 2010, InTech, Available from: articles/show/title/modelling-hydrodynamic-drag-in-swimmingusing-computational-fluid-dynamics.
[10] BIXLER B., RIEWALD S., Analysis of swimmer’s hand and arm in steady flow conditions using computational fluid dynamics, Journal of Biomechanics, 2002, Vol. 35, 713–717.
[11] ROUBOA A., SILVA A., LEAL L., ROCHA J., ALVES F., The effect of swimmer’s hand/forearm acceleration on propulsive forces generation using computational fluid dynamics, Journal of Biomechanics, 2006, Vol. 39, 1239–1248.
[12] GARDANO P., DABNICHKI P., On hydrodynamics of drag and lift of the human arm, Journal of Biomechanics, 2006, Vol. 39, 2767–2773.
[13] BIXLER B., PEASE D., FAIRHURST F., The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer, Sports Biomechanics, 2007, Vol. 6, 81–98.
[14] NAEMI R., EASSON W.J., SANDERS R.H., Hydrodynamic glide efficiency in swimming, Journal of Science and Medicine in Sport, 2010, 13(4), 444–451.
[15] ZAÏDI H., FOHANNO S., TAÏAR R., POLIDORI G., Analysis of the effect of swimmer’s head position on swimming performance using computational fluid dynamics, Journal of Biomechanics, 2008, Vol. 41, 1350–1358.
[16] ZAÏDI H., TAÏAR R., FOHANNO S., POLIDORI G., An evaluation of turbulence models in CFD simulations of underwater swimming, Series on Biomechanics, 2009, Vol. 24, 1–5.
[17] ZAÏDI H., FOHANNO S., TAÏAR R., POLIDORI G., Turbulence models choice for the calculating of drag forces when using CFD method, Journal of Biomechanics, 2010, Vol. 43, 405–411.
[18] POLIDORI G., TAÏAR R., FOHANNO S., MAI T.H. LODINI A., Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming, Journal of Biomechanics, 2006, Vol. 39, 2535–2541.
[19] PATANKAR S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980.
[20] LYTTLE A.D., Hydrodynamics of the Human Body During the Freestyle Tumble Turn, PhD Thesis, The University of Western Australia, Nedlands, Australia, 1999.
[21] CLARYS J.P., Human morphology and hydrodynamics, [in:] J. Terauds & E.W. Bedingfield (Eds.), International Series on Sports Science 8; Swimming III, 1979, 3–41. Baltimore, USA, University Park Press.
[22] RUSHALL B.S., HOLT L.E., SPRIGINGS E.J., CAPPAERT J.M., A re-evaluation of forces in swimming, Journal of Swimming Research, 1994, Vol. 10, 6–30.7.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBB-0002-0001