Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

Surface characterization, collagen adsorption and cell behaviour on poly(L-lactide-co-glycolide)

Autorzy Adamczak, M.  Ścisłowska-Czarnecka, A.  Genet, M. J.  Dupont-Gillain, C. C.  Pamula, E. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Poly(L-lactide-co-glycolide) (PLG) was modified through the adsorption of collagen to improve the behaviour of fibroblasts and osteoblasts. As reference materials cell-resistant polystyrene (PS) and cell-conductive tissue-culture polystyrene (TCPS) were also evaluated. The physicochemical surface properties of the materials were studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurements. The morphology of cells was examined using optical microscopy, while their growth was evaluated by both crystal violet and MTT tests. Nitric oxide level and protein concentration were tested in cell supernatants. The results showed that the adsorbed amount and the organization of the adsorbed collagen were influenced by surface hydrophobicity. Cell culture experiments on native substrates revealed that cell attachment, spreading and growth enhanced, depending on the substrate, in the following order: PS
Słowa kluczowe
PL kolagen   poli (L-laktyd-ko-glikolid)   AFM   XPS   wzrost komórek  
EN collagen   poly(L-lactide-co-glycolide)   AFM   XPS   cell growth  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2011
Tom Vol. 13, nr 3
Strony 63--75
Opis fizyczny Bibliogr. 29 poz., il.
autor Adamczak, M.
autor Ścisłowska-Czarnecka, A.
autor Genet, M. J.
autor Dupont-Gillain, C. C.
autor Pamula, E.
  • Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland,
[1] HENCH L.L., Biomaterials: a forecast for the future, Biomaterials, 1998, 19, 1419-1423.
[2] POWER K.A., FITZGERALD K.T., GALLAGHER W.M., Examination of cell-host-biomaterial interactions via highthroughput technologies: A re-appraisal, Biomaterials, 2010, 31, 6667-6674
[3] NORDE W., My voyage of discovery to proteins in flatland ... and beyond, Colloid Surface B, 2008, 61, 1-9.
[4] RABE M., VERDES D., SEEGER S., Understanding protein adsorption phenomena at solid surfaces, Adv. Col. Interface Sci., 2011, 162, 87-106.
[5] ZHANG M., Biocompatibility of materials, [in:] D. Shi (ed.) Biomaterials and Tissue Engineering, Springer, Berlin, 2004, 83-91.
[6] PAMULA E., DOBRZYNSKI P., SZOT B., KRETEK M., KRAWCIOW J., PLYTYCZ B., CHADZINSKA M., Cytocompatibility of aliphatic polyesters - in vitro study on fibroblasts and macrophages, J. Biomed. Mater. Res., 2008, 87A, 524-535.
[7] BRINCKMANN J., Collagens at a glance, [in:] J. Brinckmann, H. Notbohm, P.K. Muller (eds.), Collagen: Primer in Structure, Processing and Assembly, Springer, New York, 2005, 1.
[8] HEINO J., The collagen family members as cell adhesion proteins, Bioassays, 2007, 29, 1001-1010.
[9] DUPONT-GILLAIN C.C., PAMULA E., DENIS F.A., CUPERE V.D., DUFRENE Y.F., ROUXHET P.G., Controlling the supramolecular organisation of adsorbed collagen layers, J. Mater. Sc.: Mater. Med., 2004, 15, 347-353.
[10] KERESZTES Z., ROUXHET P.G., REMACLE C., DUPONTGILLIAN C.C., Supramolecular assemblies of adsorbed collagen affect the adhesion of endothelial cells, J. Biomed. Mater. Res., 2006, 76A, 223-233.
[11] DOUGLAS T., HEINEMANN S., MIETRACH C., HEMPEL U., BIERBAUM S., SCHARNWEBER D., WORTH H., Interactions of collagen types I and II with chondroitin sulfates A-C and their effect on osteoblast adhesion, Biomacromolecules, 2007, 8, 1085-1092.
[12] HANAGATA N., TAKEMURA T., MONKAWA A., IKOMA T., TANAKA J., Pre-adsorbed type-I collagen structure-dependent changes in osteoblastic phenotype, Biochem. Biophys. Res. Co., 2006, 344, 1234-1240.
[13] GUNATILLAKE P.A., ADHIKARI R., Biodegradable synthetic polymers for tissue engineering, Eur. Cells Mat., 2003, 5, 1-16.
[14] PAMULA E., SCISLOWSKA-CZARNECKA A., Immobilization of collagen - an effective method of improving cell adhesion on polymeric materials, Eng. Biomater., 2007, 63-64, 20-23.
[15] HARBERS G.M., GRAINGER D.W., Cell-material interactions: Fundamental design issues for tissue engineering and clinical considerations, [in:] S.A. Guelcher, J.O. Hollinger (eds.), An Introduction to Biomaterials, CRC Taylor & Francis, Boca Raton, 2006, 15-45.
[16] DOBRZYNSKI P., KASPERCZYK J., JANECZEK H., BERO M., Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. I. Copolymerization of glycolide with L-lactide initiated by Zr(acac)4, Macromolecules, 2001, 34, 5090-5103.
[17] PAMULA E., de CUPERE V.M., DUFRENE Y.F., ROUXHET P.G., Nanoscale organization of adsorbed collagen: influence of Interface Sci., 2004, 271, 80-91.
[18] JACQUEMART I., PAMULA E., de CUPERE V.M., ROUXHET P.G., DUPONT-GILLAIN C.C., Nanostructured collagen layers obtained by adsorption and drying, J. Colloid. Interface Sci., 2004, 278, 63-70.
[19] KOLACZKOWSKA E., SCISLOWSKA-CZARNECKA A., CHADZINSKA M., PLYTYCZ B., OPDENAKKER G., ARNOLD B., Enhanced early vascular permeability in gelatinase B (MMP-9) deficient mice: putative contribution of COX-1- derived PGE2 of macrophage origin, J. Leukoc. Biol., 2006, 80, 125-132.
[20] LO Y., HUEFNER N.D., CHAN W.S., DRYDEN P., HAGENHOFF B., BEEBE Jr T.P., Organic and inorganic contamination on commercial AFM cantilevers, Langmuir, 1999, 15, 6522-6526.
[21] GENET M.J., DUPONT-GILLAIN C.C., ROUXHET P.G., XPS analysis of biosystems and biomaterials, [in:] E. Matijevic (ed.), Medical Applications of Colloids, Springer Science, New York, 2008, 177-307.
[22] RATNER B.D., Surface properties of materials, [in:] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons (eds.), Biomaterials Science - An Introduction to Materials in Medicine, Academic Press, USA, 1996, 23-28.
[23] DUPONT-GILLAIN C.C., ROUXHET P.G., AFM study of the interaction of collagen with polystyrene and plasma-oxidized polystyrene, Langmuir, 2001, 17, 7261-7266.
[24] SMITH G.C., Evaluation of a simple correction for the hydrocarbon contamination layer in quantitative surface analysis by XPS, J. Electron. Spectrosc. Relat. Phenom., 2005, 148, 21-28.
[25] DUFRENE Y.F., MARCHAL T.G., ROUXHET P.G., Influence of substratum properties on the organization of adsorbed collagen films: in situ characterization by Atomic Force Microscopy, Langmuir, 1999, 15, 2871-2878.
[26] DENIS F.A., HANARP P., SUTHERLAND D.S., GOLD J., MUSTIN C., ROUXHET P.G., DUFRENE Y.F., Protein adsorption on model surfaces with controlled nanotopography and chemistry, Langmuir, 2002, 18, 819-828.
[27] DEWEZ J.L., BERGER V., SCHNEIDER Y.J., ROUXHET P.G., Influence of substrate hydrophobicity on the adsorption of collagen in the presence of Pluronic F68, albumin, or calf serum, J. Colloid. Interface Sci., 1997, 191, 1-10.
[28] PACHER P., BECKMAN J.S., LIAUDET L., Nitric oxide and peroxynitrite in health and disease, Physiol. Rev., 2007, 87, 315-424.
[29] ORNITZ D.M., ITOH N., Fibroblast growth factors, Genome Biol. 2: Reviews, 2001, 3005.1-12.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBA-0012-0046