Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

Construction-conditioned rollback in total knee replacement: fluoroscopic results

Autorzy Wachowski, M. M.  Fiedler, C.  Walde, T. A.  Balcarek, P.  Schuttrumpf, J. P.  Frosch, S.  Frosch, K. H.  Fanganel, J.  Gezzi, R.  Kubein-Meesenburg, D.  Nägerl, H. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Firstly, the way of implementing approximatively the initial rollback of the natural tibiofemoral joint (TFJ) in a total knee replacement (AEQUOS G1 TKR) is discussed. By configuration of the curvatures of the medial and lateral articulating surfaces a cam gear mechanism with positive drive can be installed, which works under force closure of the femoral and tibial surfaces. Briefly the geometric design features in flexion/extension are described and construction-conditioned kinematical and functional properties that arise are discussed. Due to a positive drive of the cam gear under the force closure during the stance phase of gait the articulating surfaces predominantly roll. As a result of rolling, a sliding friction is avoided, thus the resistance to motion is reduced during the stance phase. Secondly, in vivo fluoroscopic measurements of the patella tendon angle during flexion/extension are presented. The patella tendon angle/ knee flexion angle characteristic and the kinematic profile in trend were similar to those observed in the native knee during gait (0°–60°).
Słowa kluczowe
PL staw kolanowy   endoproteza   kinematyka kolana   fluoroskopia  
EN total knee replacement   kinematic profile   rollback   roll-back fluoroscopy   patella tendon angle   kinematics   knee  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2011
Tom Vol. 13, nr 3
Strony 35--42
Opis fizyczny Bibliogr. 26 poz., il.
autor Wachowski, M. M.
autor Fiedler, C.
autor Walde, T. A.
autor Balcarek, P.
autor Schuttrumpf, J. P.
autor Frosch, S.
autor Frosch, K. H.
autor Fanganel, J.
autor Gezzi, R.
autor Kubein-Meesenburg, D.
autor Nägerl, H.
  • Department of Trauma Surgery, Plastic and Reconstructive Surgery, University of Göttingen, Germany,
[1] PANDIT H., WARD T., HOLLINGHURST D., BEARD D.J., GILL H.S., THOMAS N.P., MURRAY D.W., Influence of surface geometry and the cam-post mechanism on the kinematics of total knee replacement, J. Bone Joint Surg. Br., 2005, 87, 940-945.
[2] FISCHER O., Kinematik organischer Gelenke, Braunschweig, Vieweg-Verlag, 1907, 189.
[3] NAGERL H., KUBEIN-MEESENBURG D., COTTA H., FANGHANEL J., Biomechanical principles of diarthroses and synarthroses. III: Mechanical aspects of the tibiofemoral joint and role of the cruciate ligaments, Z. Orthop. Ihre Grenzgeb., 1993, 131, 385-396.
[4] NAGERL H., WALTERS J., FROSCH K.H., DUMONT C., KUBEINMEESENBURG D., FANGHANEL J., WACHOWSKI M.M., Knee motion analysis of the non-loaded and loaded knee: a re-look at rolling and sliding, J. Physiol. Pharmacol., 2009, 60, Suppl. 8, 69-72.
[5] MEYER H.H., The roll-glide value as a motion parameter of biological curved joints exemplified by the human knee joint, Z. Orthop. Ihre Grenzgeb., 1989, 127, 716-721.
[6] ZUPPINGER H., Die active Flexion im unbelasteten Kniegelenk, Wiesbaden, Züricher Habil Schr Bergmann Verlag, 1904.
[7] IWAKI H., PINSKEROVA V., FREEMAN M.A., Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee, J. Bone Joint Surg. Br., 2000, 82, 1189-1195.
[8] PINSKEROVA V., IWAKI A., FREEMAN M., The shapes and relative movements of the femur and tibia in the unloaded cadaveric knee: A study using MRI as an anatomical tool, [in:] Insall J.N., Scott R., Saunders W.B. (editors), Surgery of the knee, III ed., Philadelphia, 2001.
[9] PINSKEROVA V., JOHAL P., NAKAGAWA S., SOSNA A., WILLIAMS A., GEDROYC W., FREEMAN M.A., Does the femur roll-back with flexion? J. Bone Joint Surg. Br., 2004, 86, 925-931.
[10] NÄGERL H., STAUFFENBERG C., FROSCH K.H., FIEDLER C., FANGHÄNEL J., KUBEIN-MEESENBURG D., WACHOWSKI M.M., Total knee replacement with natural rollback, [in:] Będziński R. (editor), Proceedings of 27th Danubia-Adria Symposium on Advances in Experimental Mechanics, Wrocław, 2010, 147-149.
[11] WACHOWSKI M.M., WALDE T.A., BALCAREK P., SCHÜTTRUMPF J.P., FROSEK S., STAUFFENBERG C., FROSCH K.H., FIEDLER C., FANGHÄNEL J., KUBEIN-MEESENBURG D., NÄGERL H., Total knee replacement with natural rollback, Ann. Anatomy, 2011, May 3.
[12] NAGERL H., FROSCH K.H., WACHOWSKI M.M., DUMONT C., ABICHT C., ADAM P., KUBEIN-MEESENBURG D., A novel total knee replacement by rolling articulating surfaces. In vivo functional measurements and tests, Acta Bioeng. Biomech., 2008, 10, 55-60.
[13] FROSCH K.H., FLOERKEMEIER T., ABICHT C., ADAM P., DATHE H., FANGHANEL J., STURMER K.M., KUBEINMEESENBURG D., NAGERL H., A novel knee endoprosthesis with a physiological joint shape: Part 1: Biomechanical basics and tribological studies, Unfallchirurg, 2009, 112, 168-175.
[14] FROSCH K.H., NAGERL H., KUBEIN-MEESENBURG D., BUCHHOLZ J., DORNER J., DATHE H., HELLERER O., DUMONT C., STURMER K.M., A new total knee arthroplasty with physiologic ally shaped surfaces: Part 2: First clinical results, Unfallchirurg, 2009, 112, 176-184.
[15] FLOERKEMEIER T., FROSCH K.H., WACHOWSKI M., KUBEINMEESENBURG D., GEZZI R., FANGHANEL J., STURMER K.M., NAGERL H., Physiologically shaped knee arthroplasty induces natural roll-back, Technol. Health Care, 2010, 19, 91-102.
[16] REES J.L., BEARD D.J., PRICE A.J., GILL H.S., MCLARDY-SMITH P., DODD C.A., MURRAY D.W., Real in vivo kinematic differences between mobile-bearing and fixed-bearing total knee arthroplasties, Clin. Orthop. Relat. Res., 2005, 204-209.
[17] van EIJDEN T.M., de BOER W., WEIJS W.A., The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle, J. Biomech., 1985, 18, 803-809.
[18] BEYER R., Technische Raumkinematik. Lehr-, Hand- und Übungsbuch zur Analyse räumlicher Getriebe, Berlin/Göttingen/ Heidelberg, Springer-Verlag, 1963.
[19] LOUIE J.K., MOTE C.D., Jr. Contribution of the musculature to rotatory laxity and torsional stiffness at the knee, J. Biomech., 1987, 20, 281-300.
[20] MARKOLF K.L., BARGAR W.L., SHOEMAKER S.C., AMSTUTZ H.C., The role of joint load in knee stability, J. Bone Joint Surg. Am., 1981, 63, 570-585.
[21] KOH T.J., GRABINER M.D., de SWART R.J., In vivo tracking of the human patella, J. Biomech., 1992, 25, 637-643.
[22] WALKER P.S., HAJEK J.V., The load-bearing area in the knee joint, J. Biomech., 1972, 5, 581-589.
[23] WISMANS J., VELDPAUS F., JANSSEN J., HUSON A., STRUBEN P., A three-dimensional mathematical model of the kneejoint, J. Biomech., 1980, 13, 677-685.
[24] WEBER W., WEBER F., Mechanics of the human walking apparatus. Section 4: on the knee, Berlin, Springer-Verlag, 1992.
[25] GALETZ M.C., UTH T., WIMMER M.A., ADAM P., GLATZEL U., Determination of the temperature rise within UHMWPE tibial components during tribological loading, Acta Biomater., 2010, 6, 552-562.
[26] PANDIT H., GILL H.S., MURRAY D.W., private communication.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBA-0012-0042