Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

Material aspects of growth plate modelling using Carter's and Stokes's approaches

Autorzy Piszczatowski, S. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Growth plate, named also as physis, is the anatomical structure responsible for the bone growth. Apart from numerous biological and biochemical factors, biomechanics has also strong influence on its functioning. Loadings acting on the bone element during its development can change (increase or decrease) the velocity of growth. This way mechanobiological processes influence the skeletal development. Several theories try to describe the relationship between loadings acting on the physis and biological processes leading to bone growth and development. Unfortunately, some serious discrepancies exist between them. Additionally, difficulties occur during the modelling of the growth plate activity, which results from the problems in determining material parameters of the particular physis component. The aim of the study was to analyse the influence of material properties of particular parts of the physis on biomechanical conditions of the bone growth. Two concepts, based on the Carter’s and Stokes’s approaches, were applied to estimate the biomechanical stimulation of the bone growth occurring within the physis volume. Results of the numerical simulations show that due to inhomogeneity of the physis structure, the complex 3-D stress state occurs within the growth plate even in the case of uniform axial pressure acting on its surface. The value of the cartilage Poisson’s ratio has a significant influence on the biomechanics of the growth plate activity estimated using both theories. Carter’s model is additionally very sensitive to its dilatational parameter. Both methods lead to non-uniform patterns of mechanical stimulation of the bone growth within the volume of the cartilage. The differences in the stiffness between cartilaginous and bone parts of the growth plate are of fundamental importance for such phenomenon.
Słowa kluczowe
PL modelowanie   płytki wzrostu   chrząstki   mechanobiologia  
EN growth plate   mechanobiology   modelling   cartilage  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2011
Tom Vol. 13, nr 3
Strony 3--14
Opis fizyczny Bibliogr. 32 poz., il.
autor Piszczatowski, S.
  • Białystok University of Technology, Faculty of Mechanical Engineering, Poland,
[1] OGDEN J.A., Anatomy and Physiology of Skeletal Development, [in:] Skeletal injury in the child, Springer, New York, 2000.
[2] BALLOCK R.T., O'KEEFE R.J., The biology of the growth plate, J. Bone Joint Surg., 2003, 85-A, 715-726.
[3] STOKES I.A.F., Mechanical effects on skeletal growth, J. Musculoskel. Neuron. Interac., 2002, 2, 277-280.
[4] PISZCZATOWSKI S., Analysis of the stress and strain in hip joint of the children with adductors spasticity due to cerebral palsy, Acta Bioeng. Biomech., 2008, 10, 52-56.
[5] HUETER C., Anatomische Studien an den Extremitaetengelenken Neugeborener und Erwachsener, Virkows Archiv. Path. Anat. Physiol., 1862, 25, 572-599.
[6] VOLKMANN R., Verletzungen und Kankenheiten der Bewegungsorgane, [in:] von Pitha F.R., Billroth T., Handbuch der allgemeinen und speciellen Chirurgie Bd UU, Teil II, Ferdinand Enke, Stuttgart, 1882.
[7] MEHLMAN C.T., ARAGHI A., ROY D.R., Hyphenated history: the Hueter-Volkmann law, Am. J. Orthop., 1997, 26, 798-800
[8] STOKES I.A.F., ARONSSON D.D., DIMOCK A.N., CORTRIGHT V., BECK S., Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension, J. Orthop. Res., 2006, 24, 1327-1334.
[9] STOKES I.A.F., CLARK K.C., FARNUM C.E., ARONSSON D.D., Alternations in the growth plate associated with growth modulation by sustained compression or distraction, Bone, 2007, 41, 197-205.
[10] VILLEMURE I., STOKES I.A.F., Growth plate mechanics and mechanobiology. A survey of present understanding, J. Biomech., 2009, 42, 1793-1803.
[11] FROST H.M., A chondral modeling theory, Calcif. Tissue Int., 1979, 28, 181-200.
[12] PAUWELS F., Biomechanics of the Locomotor Apparatus, Springer-Verlag, Berlin, 1980.
[13] CARTER D.R., WONG M., The role of mechanical loading histories in the development of diarthrodial joints, J. Orthop. Res., 1988, 6, 804-816.
[14] CARTER D.R., WONG M., Modelling cartilage mechanobiology, Phil. Trans. R. Soc. Lond B, 2003, 358, 1461-1471.
[15] WONG M., CARTER D.R., A theoretical model of endochondral ossification and bone architectural construction in long bone ontogeny, Anat. Embryol., 1990, 181, 523-532.
[16] STEVENS S.S., BEAUPRÉ G.S., CARTER D.R., Computer model of endochondral growth and ossification in long bones: biological and mechanobiological influences, J. Orthop. Res., 1999, 17, 646-653.
[17] COHEN B., LAI W.M., MOV V.C., A transversly isotropic biphasic model for unconfined compression of the growth plate and chondroepiphysis, J. Biomech. Eng., 1998, 120 (4), 491-496.
[18] TANCK E., VAN DRIEL W.D., HAGEN J.W., BURGER E.H., BLANKEVOORT L., HUISKES R., Why does intermittent hydrostatic pressure enhance the mineralization process in fetal cartilage? J. Biomech., 1999, 32, 153-161.
[19] PAWLIKOWSKI M., KLASZTORNY M., SKALSKI K., Studies on constitutive equation that models bone tissue, Acta Bioeng. Biomech., 2008, 10, 39-47.
[20] MINSTER J., Modelling of viscoelastic deformation of cortical bone tissue, Acta Bioeng. Biomech., 2003, 5, 11-21.
[21] SYLVESTRE P.L., VILLEMURE I., AUBON C.E., Finite element modeling of the growth plate in a detailed spine model, Med. Bio. Eng. Comput., 2007, 45, 977-988.
[22] LIN H., AUBIN C.E., PARENT S., Mechanobiological bone growth: comparative analysis of two biomechanical modeling approaches, Mech. Biol. Eng. Comput., 2009, 47, 357-366.
[23] SHEFELBINE S.J., CARTER D.R., Mechanobiological predictions of femoral anteversion in cerebral palsy, Ann. Biomed. Eng., 2004, 32, 297-305.
[24] RIBBLE T.G., SANTARE M.H., MILLER F., Stresses in the growth plate of the developing proximal femur, J. Appl. Biomech., 2001, 17, 129-141.
[25] SHEFELBINE S.J, TARDIEU C., CARTER D.R., Development of the femoral bicondylarangle in hominid bipedalism, Bone, 2002, 30, No. 5, 765-770.
[26] SHEFELBINE S.J., CARTER D.R., Mechanobiological predictions of growth front morphology in developmental hip dysplasia, J. Orthop. Res., 2004, 22, 346-352.
[27] BATHE K.J., Finite Elements Procedures, Prentice-Hall, Englewood Cliffs, 1996.
[28] WONG M., CARTER D.R., Mechanical stress and morphogenetic endochondral ossification of the sternum, J. Bone Joint Surg. Am., 1988, 70, 992-1000.
[29] VILLEMURE I., CLOUTIER L., MATYAS J.R., DUNCAN N.A., Non-uniform strain distribution within rat cartilaginous growth plate under uniaxial compression, J. Biomech., 2007, 40, 149-156.
[30] NOMURA S., TAKANO-YAMAMOTO T., Molecular events caused by mechanical stress in bone, Matrix Biology, 2000, 19, 91-96.
[31] PRENDERGAST P.J., KELLY D.J., MCGARRY J.G., Lecture notes on modelling of the biomechanical behaviour of cells, Advanced Course on Modelling in Biomechanics MiB'03, IPPT, Warsaw, 2003.
[32] UEKI M., TANAKA N., TANIMOTO K., NISHIO C., HONDA N., LIN Y.Y., TANNE Y., OHKUMA S., KAMIYA T., TANAKA E., TANNE K., The effect of mechanical loading on the metabolism of growth plate chondrocytes, Ann. Biomed. Eng., 2008, 36, No. 5, 793-800.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPBA-0012-0039