Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BPB2-0051-0030

Czasopismo

Acta Mechanica et Automatica

Tytuł artykułu

Positive Realization of SISO 2D Different Orders Fractional Discrete-Time Linear Systems

Autorzy Sajewski, Ł. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The realization problem for single-input single-output 2D positive fractional systems with different orders is formulated and a method based on the state variable diagram for finding a positive realization of a given proper transfer function is proposed. Sufficient conditions for the existence of a positive realization of this class of 2D linear systems are established. A procedure for computation of a positive realization is proposed and illustrated by a numerical example.
Słowa kluczowe
PL system dyskretno-czasowy   realizacja dodatnia  
EN discrete-time system   positive realisation  
Wydawca Oficyna Wydawnicza Politechniki Białostockiej
Czasopismo Acta Mechanica et Automatica
Rocznik 2011
Tom Vol. 5, no. 2
Strony 122--127
Opis fizyczny Bibliogr. 33 poz., Wykr.
Twórcy
autor Sajewski, Ł.
Bibliografia
1. Benvenuti L. Farina L. (2004), A tutorial on the positive realization problem, IEEE Trans. Autom. Control, vol. 49, no. 5, 651-664.
2. Engheta N. (1997), On the role of fractional calculus in electromagnetic theory, IEEE Trans. Atenn. Prop., vol. 39, No. 4, 35-46.
3. Farina L., Rinaldi S. (2000), Positive Linear Systems, Theory and Applications, J. Wiley, New York.
4. Ferreira N.M.F, Machado J.A.T. (2003), Fractional-order hybrid control of robotic manipulators, Proc. 11th Int. Conf. Advanced Robotics, ICAR, Coimbra, Portugal, 393-398.
5. Gałkowski K., Kummert A. (2005), Fractional polynomials and nD systems, Proc IEEE Int. Symp. Circuits and Systems, ISCAS, Kobe, Japan, CD-ROM.
6. Kaczorek T. (2002), Positive 1D and 2D Systems, SpringerVerlag, London.
7. Kaczorek T. (2004), Realization problem for positive discrete-time systems with delay, System Science, vol. 30, no. 4, 117-130.
8. Kaczorek T. (2005), Positive minimal realizations for singular discrete-time systems with delays in state and delays in control, Bull. Pol. Acad. Sci. Techn., vol 53, no. 3, 293-298.
9. Kaczorek T. (2006a), A realization problem for positive continues-time linear systems with reduced numbers of delay, Int. J. Appl. Math. Comp. Sci., Vol. 16, No. 3, pp. 325-331.
10. Kaczorek T. (2006b), Computation of realizations of discretetime cone systems, Bull. Pol. Acad. Sci. Techn., vol. 54, no. 3, 2006, 347-350.
11. Kaczorek T. (2006c), Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs, Int. J. Appl. Math. Comp. Sci., vol. 16, no. 2, 101-106.
12. Kaczorek T. (2007), Positive 2D hybrid linear systems, Bull. Pol. Acad. Sci. Techn., vol 55, no. 4, 351-358.
13. Kaczorek T. (2008a), Fractional positive continuous-time linear systems and their reachability, Int. J. Appl. Math. Comput. Sci., vol. 18, no. 2, 223-228.
14. Kaczorek T. (2008b), Realization problem for fractional continuous-time systems, Archives of Control Sciences, vol. 18, no. 1, 43-58.
15. Kaczorek T. (2008c), Realization problem for positive 2D hybrid systems, COMPEL, vol. 27, no. 3, 613-623.
16. Kaczorek T. (2008d), Realization problem for positive fractional discrete-time linear systems, Pennacchio S. (Ed.): Emerging Technologies, Robotics and Control Systems, Int. Society for Advanced Research, 226-236.
17. Kaczorek T. (2008e), Positive fractional 2D hybrid linear systems, Bull. Pol. Acad. Sci. Techn., vol 56, no. 3, 273-277.
18. Kaczorek T. (2009a), Fractional positive linear systems, Kybernetes: The International Journal of Systems & Cybernetics, vol. 38, no. 7/8, 1059–1078.
19. Kaczorek T. (2009b), Wybrane zagadnienia teorii układów niecałkowitego rzędu. Oficyna Wydawnicza Politechniki Białostockiej, Rozprawy Naukowe Nr 174, Białystok.
20. Kaczorek T. (2011), Selected Problems in Fractional Systems Theory, Springer-Verlag.
21. Klamka J. (2002), Positive controllability of positive systems, Proc. of American Control Conference, ACC-2002, Anchorage, (CD-ROM).
22. Klamka J. (2005), Approximate constrained controllability of mechanical systems, Journal of Theoretical and Applied Mechanics, vol. 43, no. 3, 539-554.
23. Miller K.S., Ross B. (1993), An Introduction to the Fractional Calculus and Fractional Differenctial Equations. Willey, New York.
24. Nishimoto K. (1984), Fractional Calculus, Decartess Press, Koriama.
25. Oldham K. B., Spanier J. (1974), The Fractional Calculus. Academmic Press, New York:.
26. Ortigueira M. D. (1997), Fractional discrete-time linear systems, Proc. of the IEE-ICASSP, Munich, Germany, IEEE, New York, vol. 3, 2241-2244.
27. Ostalczyk P. (2000), The non-integer difference of the discrete-time function and its application to the control system synthesis, Int. J. Syst, Sci., vol. 31, no. 12, 1551-1561.
28. Oustaloup A. (1993), Commande CRONE, Hermés, Paris.
29. Podlubny I. (1999), Fractional Differential Equations, Academic Press, San Diego.
30. Podlubny I., Dorcak L., Kostial I. (1997), On fractional derivatives, fractional order systems and PIλDµ-controllers, Proc. 36th IEEE Conf. Decision and Control, San Diego, CA, 4985-4990.
31. Rogowski K., Kaczorek T. (2010), Positivity and stabilization of fractional 2D linear systems described by the Roesser model, International Journal of Applied Mathematics and Computer Science, vol. 20, no. 1, 85-92.
32. Sajewski Ł. (2010), Realizacje dodatnie dyskretnych liniowych układów niecałkowitego rzędu w oparciu o odpowiedź impulsową, Measurement Automation and Monitoring, vol. 56, no. 5, 404-408.
33. Zaborowsky V. Meylaov R. (2001), Informational network traffic model based on fractional calculus, Proc. Int. Conf. Info-tech and Info-net, ICII, Beijing, China, vol. 1, 58-63.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPB2-0051-0030
Identyfikatory