Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of coupled heat, moisture and salt transport in porous materials

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Polish Conference on Computer Methods in Mechanics (16 ; 21-24.06.2005 ; Częstochowa, Poland
Języki publikacji
A mathematical model describing coupled heat, moisture and salt transport in porous materials is pre-sented. Salt dissolved in water can be transported due to various mechanisms: dispersion caused by the salt concentration gradient, and advection resulting from the capillary pressure gradient. The influence of salt on the physical properties of water such as density and dynamie viscosity is also considered. The isotherms of water sorption are modified to take into account both osmosis and effects of the salt presence on the surface tension and contact angle. Salt precipitation in the state of thermodynamic equilibrium between dissolved and crystallized salt is also considered. Finally, the model equations were discretized in space by means of FEM and the HMTRA-SALT software was developed. An example concerning a wali drying process was numerically solved to show the robustness of the code.
Opis fizyczny
Bibliogr. 14 poz., wykr.
  • Chair of Building Physics and Building Materials, Technical Unwersity of Łódź, Al. Politechniki 6, 90-924 Łódź, Poland
  • [1] J. Bear. Dynamics of Fluids in Porous Media. Dover Publications, New York, 1988.
  • [2] J. Bear, Y. Bachmat. Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, The Netherlands, 1991.
  • [3] D. Gawin, B.A. Schrefler. Thermo- hydro- mechanical analysis of partially saturated porous materials. Engineering Computations, 13(7): 113-143, 1996.
  • [4] D. Gawin. Modelling of the coupled hygro-thermal phenomena in building materials (in Polish). Technical University of Lodz, 2000.
  • [5] S.M. Hassanizadeh, W.G. Gray. General conservation equations for multi-phase system: 1. Averaging procedure. Advances in Water Resources, 2: 131-144, 1979.
  • [6] S.M. Hassanizadeh, W.G. Gray. General conservation equations for multi-phase system: 2. Mass, momenta, energy and entropy equations. Advances in Water Resources, 2: 191-203, 1979.
  • [7] S.M. Hassanizadeh, W.G. Gray. General conservation equations for multi-phase system: 3. Constitutive theory for porous media flow. Advances in Water Resources, 3: 25-40, 1980.
  • [8] S.M. Hassanizadeh, T. Leijnse. On the modeling of brine transport in porous media. Water Resource Research, 3: 321-330, 1988.
  • [9] R.W. Lewis, B.A. Schrefler. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley and Sons, Chichester, 1998.
  • [10] D.U. Ophori. The significance of viscosity in density-dependent flow of groundwater. Journal of Hydrology, 204: 261-270, 1998.
  • [11] D.R.J. Owen, E. Hinton. Finite Elements in Plasticity: Theory and Practice. Pineridge Press Ltd., Swansea, 1980.
  • [12] P. Rucker, M. Krus, A. Holm. Einsatz einer Kombinierten Messtechnikmethode zur Untersuchung von Salz-transportvergangen. Bauphysik, 25: 296-302. 2003.
  • [13] M.J. Simpson, T.P. Clement. Theoretical analysis of the worthiness of Henry and Elder problems as benchmarks of density-dependent groundwater flow models. Advances in Water Resources, 26: 17-31. 2003.
  • [14] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method. Basic Formulation and Linear Problems, 4th ed, Vol. 1. McGraw-Hill Ltd., London, 1991.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.