Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cell deformation in response to long-term hyperosmotic loading

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Hypertrophic and elongated cells are found in differentiation zones of load-bearing tissues, where tissue hyperosmotic. In this paper we study if, in response to long-term hyperosmotic loading, cells are -affected with hypertrophy or elongation, and whether these responses are cell-specific. Surface adhesion and elongation of CHO-K1 and C2C12 cells were determined with CLSM, after 2 and 5 days of culture in 380 mOsmol medium. Results show that both cell types increase an adhesion area (p < 0.001 for CHO-K1 cells, p < 0.01 for C2Cl2 cells), independent of the method used to increase osmotic pressure. Despite the differences :dl types (CHO-K1 cells are smaller (p < 0.001) and their morphological changes are more pronounced). aspect ratio remains constant for all cell types and experimental conditions (p > 0.1). Conclusively, all cells hypertrophy, but do not elongate under hyperosmotic loading. Quantitatively, CHO-K1 cells respond more than C2C12 cells.
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
  • Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
  • Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
  • Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
  • [1] VAN der MEULEN M.C., BAILÔN-PLAZA A., HUNTER W.L., Long bone fracture healing in bone morphogenetic protein-5 deficient mice, The Journal of Bone and Mineral Research, 1998, 13:S352.
  • [2] GUILAK F., RATCLIFFE A., MOW V.C., Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study, Journal of Orthopaedic Research, 1995, 13:410–413.
  • [3] WALMSLEY R., The development and growth of the intervertebral disc, Edinburgh Medical Journal, 1953, 60:341–364.
  • [4] HAYES A.J., BENJAMIN M., RALPHS J.R., Role of actin stress fibres in the development of the intervertebral disc: Cytoskeletal control of extracellular matrix assembly, Developmental Dynamics, 1999, 215:179–189.
  • [5] RUFAI A., BENJAMIN M., RALPHS J.R., The development of fibrocartilage in the rat intervertebral disc, Anatomy and Emryology, 1995, 192:53–62.
  • [6] HOFFMANN E.K., SIMONSEN L.O., Membrane mechanisms in volume and pH regulation in vertebrate cells, Physiological Reviews, 1989, 69:315–382.
  • [7] ISHIHARA H., WARENSJO K., ROBERTS S., URBAN J.P.G., Proteoglycan synthesis in the intervertebral disk nucleus: The role of extracellular osmolality, American Journal of Physiology – Cell Physiology, 1997, 272:C1499–C1506.
  • [8] MOW V.C., WANG C.C., HUNG C.T., The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage, Osteoarthritis and Cartilage, 1999, 7:41–58.
  • [9] URBAN J.P.G., Present perspectives on cartilage and chondrocyte mechanobiology, Biorheology, 2000, 37:185–190.
  • [10] SOLEIMANI M., SINGH G., DOMINGUEZ J.H., HOWARD R.L., Long-term high osmolality activates Na+–H+ exchange and protein kinase C in aortic smooth muscle cells, Circulation Research, 1995, 76:530–535.
  • [11] TAKAGI M., HAYASHI H., YOSHIDA T., The effect of osmolarity on metabolism and morphology in adhesion and suspension chinese hamster ovary cells producing tissue plasminogen activator, Cytotechnology, 2000, 32:171–179.
  • [12] CURTIS A., WILKINSON C., Nanotechniques and approaches in biotechnology, Trends in Biotechnology, 2001, 19:97–101.
  • [13] LEVESQUE M.J., NEREM R.M., The elongation and orientation of cultured endothelial cells in response to shear stress, Transactions of the ASME, Journal of Biomechanical Engineering, 1985, 107:341–347.
  • [14] MILLS I., COHEN C.R., KAMAL K., LI G., SHIN T., DU W., SUMPIO B.E., Strain activation of bovine aortic smooth muscle cell proliferation and alignment. Study of strain dependency and the role of protein kinase A and C signaling pathways, Journal of Cellular Physiology, 1997, 170:228–234.
  • [15] SATO M., OHSHIMA N., Flow-induced changes in shape and cytoskeletal structure of vascular endothelial cells, Biorheology, 1994, 31:143–153.
  • [16] THOUMINE O., ZIEGLER T., GIRARD P.R., NEREM R.M., Elongation of confluent endothelial cells in culture: the importance of fields of force in the associated alterations of their cytoskeletal structure, Experimental Cell Research, 1995, 219:427–441.
  • [17] CHAO P.H.G., ROY R., MAUCK R.L., LIU W., VALHMU W.B., HUNG C.T., Chondrocyte translocation response to direct current electric fields, Transactions of the ASME. Journal of Biomechanical Engineering, 2000, 122:261–267.
  • [18] FRIEDL P., BROCKER E.B., The biology of cell locomotion within three-dimensional extracellular matrix, Cellular and Molecular Life Sciences, 2000, 57:41–64.
  • [19] DUK JAE O., MARTINEZ A.R., GYUN MIN L., FRANCIS K., PALSSON B.O., Extension of osmolalityinduced podia is observed from fluorescently labeled hematopoietic cell lines in hyperosmotic medium, Cytometry, 2000, 40:109–118.
  • [20] URBAN J.P.G., The chondrocyte: a cell under pressure, British Journal of Rheumatology, 1994, 33:901–908.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.