Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BOS5-0021-0020

Czasopismo

Journal of Achievements in Materials and Manufacturing Engineering

Tytuł artykułu

A review of monitoring for nanoimprinting

Autorzy Hocheng, H.  Nien, C. C. 
Treść / Zawartość http://www.journalamme.org
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: This article provides an overview of the monitoring technique for nanoimprint. Optical and electrical monitoring approaches that have the potential for detecting and monitoring mold deformation and cavity filling in nanoimprint will be reviewed. The major part is devoted to the review of an in-situ mold filling monitoring system based on capacitance measurement for nanoimprinting operations. Design/methodology/approach: In carrying out the capacitive monitoring method, a broad range of areas including tuning the imprint process, designing a reliable capacitive sensor, finding out the right materials and a suitable surface micromachining process for sensing electrodes, and data analysis have seen covered. In addition, to measure the continuous variations in capacitance, a series of imprinting experiments have been performed isothermally, and the capacitance values have also been measured at various imprinting stages. Findings: The final stage of mold filling near the end, which is of particular interest, can be monitored and the experimental results have demonstrated that the capacitance measurements indeed provide the in-situ information that can tell the mold filling status during nanoimprinting. Research limitations/implications: The use of neural networks to model the functional relationship between the capacitance value and the rising height of mold filling is recommended as another potential area for future research to realize the ultimate objective of providing online real-time mold filling information for imprinting process control. Practical implications: Throughout the study, the authors conclude the proposed capacitance measurement technique is a promising approach for monitoring mold filling in nanoimprinting process, and the practical application of the conducted research is feassible with certain improvement of the robustness of the monitoring technique in harsh environment of higher imprinting temperature. Originality/value: The reviewed monitoring methods are based on the authors' approved and pending patents. They are considered pioneering works for the research community of nanoimprint techniques and as the basis of making nanoimprint process automated.
Słowa kluczowe
PL nanoprodukcja   litografia nanoimprint   odkształcenie wyprasek wtryskowych   wypełnianie formy   pomiar pojemności   monitoring  
EN nanofabrication   nanoimprint   mold deformation   cavity filling   capacitance measurement   monitoring  
Wydawca International OCSCO World Press
Czasopismo Journal of Achievements in Materials and Manufacturing Engineering
Rocznik 2007
Tom Vol. 24, nr 1
Strony 382--389
Opis fizyczny Bibliogr. 33 poz., fot., rys.
Twórcy
autor Hocheng, H.
autor Nien, C. C.
  • Department of Power Mechanical Engineering, National Tsing Hua University 101, Sec. 2 Kuang Fu Road, Hsinchu 300, Taiwan, R.O.C., hocheng@pme.nthu.edu.tw
Bibliografia
[1] H.C. Scheer, H. Schultz, T. Hoffmann, C.M.S. Torres, Nanoimprint techniques, in: H.S. Nalwa (Ed.), Handbook of Thin Film Materials, Academic Press, New York, 2002.
[2] S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Applied Physics Letters 67/21 (1995) 3114-3116.
[3] S.Y. Chou, U.S. Patent 5772905, 1998.
[4] S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography, Journal of Vacuum Science Technology B14 (1996) 4129-4133.
[5] S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint Litography with 25-Nanometer Resolution Science 272 (1996) 85-87.
[6] S.Y. Chou, P.R. Krauss, Imprint Lithography with sub-10 nm Feature Size and High Throughput, Microelectron Engineering 35 (1997) 237-240.
[7] S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, Sub-10 nm imprint lithography and applications, Journal of Vacuum Science Technology B15 (1997) 2897-2904.
[8] C.M.S. Torres, S. Zankovych, J. Seekamp, A.P. Kam, C.C. Cedeno, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M.V. Maximov, B. Heidari, Nanoimprint lithography: an alternative nanofabrication approach, Materials Science and Engineering C23 (2003) 23-31.
[9] S. Zankovych, T. Hoffmann, J. Seekamp, J.U. Bruch, C.M.S. Torres, Nanoimprint lithography: challenges and prospects, Nanotechnology 12 (2001) 91-95.
[10] S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, Sub-10 nm imprint lithography and applications, Jounal of Vacuum Science Technology B15 (1997) 2897-2904.
[11] X. Sun, L. Zhuang, W. Zhang, S.Y. Chou, Multilayer resist methods for nanoimprint lithography on nonflat surfaces, Journal of Vacuum Science Technology B16 (1998) 3922-3925.
[12] B. Heidari, I. Maximov, L. Montelius, Nanoimprint lithography at the 6 in. wafer scale, Journal of Vacuum Science Technology B18 (2000) 3557-3560.
[13] L.R. Bao, X. Cheng, X.D. Huang, L.J. Guo, S.W. Pang, A.F. Yee, Nanoimprinting over topography and multilayer three-dimensional printing, Journal of Vacuum Science Technology B20 (2002) 2881-2886.
[14] D.L. White, O.R. Wood II, Novel alignment system for imprint lithography, Journal of Vacuum Science Technology B18 (2000) 3552-3556.
[15] W. Zhang, S.Y. Chou, Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers, Applied Physical Letters 79 (2001) 845-847.
[16] T. Bailey, B.J. Choi, M. Colburn, M. Meissl, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, C.G. Willson, Step and flash imprint lithography: Template surface treatment and defect analysis, Journal of Vacuum Science Technology B18 (2000) 3572-3575.
[17] M.M. Alkaisi, R.J. Blaikie, S.J. McNab, Low temperature nanoimprint lithography using silicon nitride molds, Microelectron Engineering 57-58 (2001) 367-373.
[18] M. Li, L. Chen, W. Zhang, S.Y Chou, Pattern transfer fidelity of nanoimprint lithography on six-inch wafers, Nanotechnology 14 (2003) 33-36.
[19] H. Schulz, H.C. Scheer, T. Hoffmann, C.M.S. Torres, K. Pfeiffer, G. Bleidiessel, G. Grutzner, C. Cardinaud, F. Goboriau, M.C. Peignon, J. Ahopelto, B. Heidari, New polymer materials for nanoimprinting, Journal of Vacuum Science Technology B18 (2000) 1861-1865.
[20] H. Schulz, D. Lyebyedyev, H.C. Scheer, K. Pfeiffer, G. Bleidiessel, G.Grutzner, J. Ahopelto. Master replication into thermosetting polymers for nanoimprinting, Journal of Vacuum Science Technology B18 (2000) 3582-3585.
[21] S. Zankovych, T. Hoffmann, J. Seekamp, J.U. Bruch, C.M.S. Torres, Nanoimprint lithography: challenges and prospects, Nanotechnology 12 (2001) 91-95.
[22] H. Hocheng C.C. Nien, In-situ monitoring method and system for mold deformation in nanoimprint, R.O.C. Patent 194337, 2004, U.S. Patent 6909998, 2005.
[23] H.C. Scheer, H. Schulz, Problems of the nanoimprinting technique for nanometer scale pattern definition, Journal of Vacuum Science Technology B16 (1998) 3917-3921.
[24] L.J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, Flow behaviour of thin polymer films used for hot embossing lithography, Microelectron Engineering 54 (2000) 229-245.
[25] H.C. Scheer, H. Schulz, A contribution to the flow behaviour of thin polymer films during hot embossing litography, Microelectron. Engineering 56 (2001) 311-332.
[26] H. Schift, L.J. Heyderman, M. Auf der Maur, J. Gobrecht, Pattern formation in hot embossing of thin polymer films, Nanotechnology 12 (2001) 173-177.
[27] Z. Yu, H. Gao, S.Y. Chou, In situ, Real-Time Process Characterization and Control in Nanoimprint Lithography using Time-Resolved Diffractive Scatterometry, Proceedings of The 48th International Conference on Electron, Ion, and Photon Beam Technology & Nanofabrication, San Diego, 2004, 380-381.
[28] Z. Yu, H. Gao, S.Y. Chou, New Developments in Real-time Imprint Monitoring by Scattering-of-light (RIMS), Proceedings of The 3rd International Conference on Nanoimprint and Nanoprint Technology, Vienna, 2004.
[29] Z. Yu, H. Gao, S.Y. Chou, In situ real time process characterization in nanoimprint lithography using time-resolved diffractive scatterometry, Applied Physics Letters 85/18 (2004) 4166-4168.
[30] C. Finder, M. Beck, J. Seekamp, K. Pfeiffer, P. Carlberg, I. Maximov, F. Reuther, E.L. Sarwe, S. Zankovich, J. Ahopelto, L. Montelius, C. Mayer, and C.M.S. Torres, Fluorescence microscopy for quality control in nanoimprint lithography, Microelectron Engineering 67-68 (2003) 623-628.
[31] C.C. Nien, H. Hocheng, and K.S. Kao, Numerical Analysis for Stress and Strain Distributions of Imprint Mold During Nanoimprinting Process, Proceedings of 3rd International Conference on Nanoimprint and Nanoprint Technology, Vienna, 2004.
[32] H. Hocheng, C.C. Nien, Nanoimprint system with mold deformation detector and method of monitoring the same, R.O.C. Patent No. 226934, 2005, U.S. Patent Pending No. 10/791,926, 2004.
[33] C.C. Nien, H. Hocheng T.C. Liu, Capacitive measurement method and system for nanoimprint process monitoring, R.O.C Patent Pending No. 93108225, 2004, U.S. Patent Pending No. 10/851,113, 2004.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BOS5-0021-0020
Identyfikatory