Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BOS5-0020-0012

Czasopismo

Journal of Achievements in Materials and Manufacturing Engineering

Tytuł artykułu

Superplasticity in titanium alloys

Autorzy Sieniawski, J.  Motyka, M. 
Treść / Zawartość http://www.journalamme.org
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: The paper reports characteristic of superplasticity phenomenon in titanium alloys and possibility of its applications. Design/methodology/approach: The main objective of the paper is to show features of superplastic forming of titanium alloys and current research trends aiming at widespread application of this technology. Findings: In the paper characteristic of selected superplastic titanium alloys was presented. The effect of microstructural parameters on superplasticity was considered too. Mechanical properties of superplastic deformed titanium alloys, determining criteria of their potential applications, were also addressed. Research limitations/implications: Application of superplastic forming (SPF) in industry is limited due to long time and high temperature of the forming process. In the paper directions of the studies were presented which can lead to increase in effectiveness of the process. Practical implications: SPF enables manufacturing of complex shape details in one-step technological operation. Together with diffusion bonding (DB) it offers particular advantages making possible to manufacture complicated multilayer structures. Originality/value: The paper summarizes achievements of the studies on the superplasticity of Ti alloys, emphasizes the role of microstructural parameters and methods of their modification leading to better results and economics of SPF.
Słowa kluczowe
PL materiały nadplastyczne   obróbka plastyczna   stopy tytanu   mikrostruktura  
EN superplastic materials   plastic forming   titanium alloys   microstructure  
Wydawca International OCSCO World Press
Czasopismo Journal of Achievements in Materials and Manufacturing Engineering
Rocznik 2007
Tom Vol. 24, nr 1
Strony 123--130
Opis fizyczny Bibliogr. 47 poz., fot., rys., tab.
Twórcy
autor Sieniawski, J.
autor Motyka, M.
  • Department of Material Science, The Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland, motyka@prz.edu.pl
Bibliografia
[1] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge 1997.
[2] M. Grabski, Fine-structure superplasticity in metals, Silesian Press Katowice 1973 (in Polish).
[3] A.K. Mukherjee, An examination of the constitutive equation for elevated temperature plasticity, Materials Science Engineering A 322 (2002) 1-22.
[4] J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, K. Maruyama, Stress-induced phase transformation during superplastic deformation in two-phase Ti-Al-Fe alloy, Acta Materialia 48 (2000) 2059-2069.
[5] O.A. Kaibyshev, Fundamental aspects of superplastic deformation, Materials Science Engineering A324 (2002) 96-102.
[6] N. Machida, K. Funami, M. Kobayashi, Grain refinement and superplasticity of reaction sintered TiC dispersed Ti alloy composites using hydrogenation treatment, Materials Science Forum 357-359 (2001) 539-544.
[7] C. Schuh, D.C. Dunand, Transformation superplasticity of Ti-6Al-4V and Ti-6Al-4V matrix composites at high stresses, Materials Science Forum 357-359 (2001) 177-182.
[8] H. Inagaki, Mechanism of enhanced superplasticity in thermomechanically processed Ti-6Al-4V, Zeitschrift fur Metallkunde 87/3 (1996) 179-186.
[9] A. Ogawa, H. Iizumi, K. Minakawa, Superplasticity and post-SPF properties of SP-700, Proceedings of the Conference „Titanium '95: Science and Technology”, Birmingham 1995, 588-595.
[10] R.J. Tisler, R.J. Lederich, Advanced superplastic titanium alloys, Proceedings of the Conference „Titanium '95: Science and Technology", Birmingham 1995, 596-603.
[11] Y. Combres, J.J. Blandin, Comparison of the β-CEZ and Ti-64 superplastic properties, Proceedings of the Conference „Titanium '95: Science and Technology”, Birmingham 1995, 864-871.
[12] H. Inagaki, Enhanced superplasticity in high strength Ti alloys, Zeitschrift fur Metallkunde 86 (1995) 9 643-650.
[13] Z. Kulikowski, A. Wisbey, C.M. Ward-Close, Superplastic deformation in the biomedical titanium alloy Ti-6Al-7Nb (IMI 376), Proceedings of the Conference „Titanium '95: Science and Technology”, Birmingham 1995, 909-916.
[14] G.A. Salishchev, M.A. Murzinova. S.V. Zherebtsov, D.D. Afonichev, S.P. Malysheva, Influence of reversible hydrogen alloying on formation of SMC structure and superplasticity of titanium alloys, Materials Science Forum 357-359 (2001) 315-320.
[15] J.H.Kim, C.G.Park, T.K. Ha, Y. W. Chang, Microscopic observation of superplastic deformation in a 2-phase Ti3Al-Nb alloy, Materials Science Engineering A 269 (1999) 197-204.
[16] G. Frommeyer, M. Rommerskirchen, Structural super-plasticity in a micro duplex γ - TiAl / α2 - Ti3Al alloy, Proceedings of the Conference „Titanium '95: Science and Technology”, Birmingham 1995, 239-247.
[17] V.M. Imayev, G.A. Salishchev, M.R. Shagiev, A.V. Kuznetsov, R.M. Imayev, O.N. Senkov, F.H. Froes, Low-temperature superplasticity of submicrocrystalline Ti-48Al-2Nb-2Cr alloy produced by multiple forging. Scripta Materialia 40/2 (1999) 183-190.
[18] H. Hofmann, G. Frommeyer, W. Herzog, Dislocation creep controlled superplasticity at high strain rates in the ultrafine grained quasi-eutectoid Ti-10Co-4Al alloy, Proceedings of the Conference „Titanium '95: Science and Technology”, Birmingham 1995, 833-840.
[19] M. Kobayashi, S. Ochiai, K. Funami, C. Ouchi. S. Suzuki, Superplasticity of fine TiC and TiN dispersed Ti-6Al-4V alloy composites, Materials Science Forum 170-172 (1994) 549-554.
[20] W.C. Chen, D.E. Ferguson, H.S. Ferguson, R.S. Mishra, Z. Jin, Development of ultrafine grained materials using the MAXStrain® technology, Materials Science Forum 357-359 (2001) 425-430.
[21] T.G. Langdon, M. Furukawa, M. Nemoto, Z. Horita, Using severe plastic deformation for grain refinement and superplasticity, Materials Science Forum 357-359 (2001) 489-498.
[22] B.Z. Bai, X.J. Sun, J.L. Gu, L.Y. Yang, Superplastic behavior of a Ti-alloy with sub-micro structure, Materials Science Forum 357-359 (2001) 105-110.
[23] A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee, Superplastic behaviour of utrafine-grained Ti-6A1-4V alloys, Materials Science Engineering A323 (2002) 318-325.
[24] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103-189.
[25] S.M.Kim, J.Kim, D.H. Shin, Y.G. Ko, C.S.Lee, S.L. Semiatin, Microstructure development and segment formation during ECA pressing of Ti-6Al-4V alloy, Scripta Materialia 50 (2004) 927-930.
[26] M. Richert, Changes of structure and properties due to severe plastic deformation, Materials Engineering 2 (1997) 59-69 (in Polish).
[27] M. Kobayashi, S. Ochiai, K. Funami, C. Ouchi, S. Suzuki, Superplasticity of fine TiC and TiN dispersed Ti-6A1-4V alloy composites, Materials Science Forum 170-172 (1994) 549-554.
[28] S. Ochiai, M. Kobayashi, K. Michimura, Mechanical properties of TiAl and (TiAl+Ti3Al) alloys produced by mechanical alloying, MRS Symposium Proceedings 196 (1990) 201-206.
[29] H. Yoshimura, K. Kimura, M. Hayashi, M. Ishi, T. Hanamura, J. Takamura, Ultra-fine equiaxed grain refinement and improvement of mechanical properties of α+β type titanium alloys by hydrogenation, hot working, heat treatment and dehydrogenation, Materials Transaction JIM 35 (1994) 4 266-272.
[30] A.L. Dowson, P.L. Blackwell, M. Jones, J.M. Young, M. A. Duggan, Hot rolling and superplastic forming response of net shape processed Ti-6Al-4V produced by centrifugal spray deposition. Materials Science and Technology 14 (1998) 640-650.
[31] M.G. Zelin, Processes of microstructural evolution during superplastic deformation, Materials Characterization 37 (1996) 311-329.
[32] M. Motyka, J. Sieniawski, The influence of thermo-mechanical process conditions on superplastic behaviour of Ti-6Al-4V titanium alloy, Advances in Manufacturing Science and Technology 28 (2004) 31-43.
[33] A. Bylica, J. Sieniawski, Titanium and its alloys, PWN, Warsaw 1985 (in Polish).
[34] M. Jain, M.C. Chaturvedi, N.L. Richards, N.C. Goel, Microstructural characteristics in a phase during superplastic deformation of Ti-6Al-4V, Materials Science Engineering A 145 (1991) 205-214.
[35] J M.L. Meier, D.R. Lesuer, A.K. Mukherjee, a grain size and β volume fraction aspects of the superplasticity of Ti-6Al-4V, Materials Science Engineering A 136 (1991) 71-78.
[36] C.S. Lee, J.S. Kim, Y.T. Lee, F.H. Froes, Superplastic deformation behavior of Ti3Al-based alloys, Proceedings of the Conference „Titanium '95: Science and Technology”, Birmingham 1995, 356-363.
[37] M.L. Meier, D.R. Lesuer, A.K. Mukherjee, The effects of the α/β phase proportion on the superplasticity of Ti-6Al-4V and iron-modified Ti-6Al-4V, Materials Science Engineering A 154 (1992) 165-173.
[38] M.T. Cope, D.R. Evetts, N. Ridley, Post-forming tensile properties of superplastic Ti-6Al-4V alloy, Materials Science and Technology 3 (1987) 455-461.
[39] C.Wang, G. Hou, A study on post-SPF mechanical characteristics of Ti-6Al-4V. Materials Science Forum 170-172 (1994) 213-218.
[40] A. Demaid, A history of superplastic metals [in:] J.H.W. de Wit, A. Demaid, M. Onillon, Case studies in manufacturing with advanced materials - Vol. 1, North-Holland, Amsterdam 1992, 35-71.
[41] R. Martin, D. Evans, Reducing costs in aircraft: The metals affordability initiative consortium, Journal of the Minerals, Metals & Materials Society 52/3 (2000) 24-28.
[42] RV. Curtis, D. Garriga-Majo, A.S. Juszczyk, S. Soo, D. Pagliaria, J.D. Walter, Detal implant superstructures by superplastic forming, Materials Science Forum 357-359 (2001) 47-52.
[43] V.V. Boytsov, S.E. Goutman, Y.V. Djuromsky, V.I. Maslennikova, Isothermal forging of precise titanium alloys blanks for medical application, Materials Science Forum 170-172 (1994) 731-736.
[44] Y.W. Xun, M.J. Tan, Applications of superplastic forming and diffusion bonding to hollow engine blades, Journal of Materials Processing Technology 99 (2000) 80-85.
[45] P.J. Winkler, Superplasticity in use: A critical review of its status, trends and limits, MRS Symposium Proceedings 196 (1990) 123-135.
[46] A. Jocelyn, T. Flower, D. Nash, Generic ceramic tooling (GENCERT) for the SPF/DB process, Materials Science Forum 357-359 (2001) 23-28.
[47] K. Higashi, Recent advances and future directions in superplasticity, Materials Science Forum 357-359 (2001) 3-
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BOS5-0020-0012
Identyfikatory