Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BOS5-0019-0097

Czasopismo

Journal of Achievements in Materials and Manufacturing Engineering

Tytuł artykułu

Comparison of different techniques of laser surface hardening

Autorzy Grum, J. 
Treść / Zawartość http://www.journalamme.org
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: The paper gives a comparison of various techniques of laser surface hardening for various kinds of structural and tool steels, and special maraging steel and hardening of nodular graphite and gray cast irons. Design/methodology/approach: Experimental investigations of laser surface transformation hardening, laser remelting and laser shock processing were performed. Trials of laser hardening were carried out under different conditions, with different modes of laser guidance over the specimen surfaces, and with different degrees of path overlapping. Different kinds of absorbents, were tested, the depths of hardened paths or layers were measured, profiles of hardness and residual stresses were measured, the microstructures formed were analysed, and a micro-chemical analysis was made. Findings: The investigations showed that under different laser-hardening conditions quite different surface-layer properties are obtained. A very strong connection of the chosen energy input, the type of absorbent used, the degree of overlapping, and the mode of laser-beam guidance with the depth of the hardened path or layer, and the through-depth profiles of microhardness and residual stresses of the hardened path or layer was found. Research limitations/implications: The industrial requirements for the achievement of appropriate properties of surface layers, with special regard to the hardened-layer depth, and appropriate variations of microhardness and residual stresses are more and more frequent. The residual-stress profiles should have high compressive stresses at the surface and a small gradient of the residual stresses in the subsurface of the hardened layer. In this way high fatigue resistance of a material can be ensured and occurrence and propagation of cracks prevented. These findings offer engineers new concepts in the improvement of surfaces of machine and tool parts. Practical implications: With the present findings constructors and experts in laser technology can essentially improve the quality and operating life of machine parts or tools. Originality/value: The research conducted on the influences of different modes of laser-beam guidance in terms of microstructure and variations of microstructure and residual stresses in the thin surface layer are original.
Słowa kluczowe
PL stopy metaliczne   materiały narzędziowe   właściwości mechaniczne   ocena niezawodności   metalografia  
EN metallic alloys   tool materials   mechanical properties   reliability assessment   metallography  
Wydawca International OCSCO World Press
Czasopismo Journal of Achievements in Materials and Manufacturing Engineering
Rocznik 2007
Tom Vol. 24, nr 1
Strony 17--25
Opis fizyczny Bibliogr. 28 poz., fot., rys.
Twórcy
autor Grum, J.
  • Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia, janez.grum@fs.uni-lj.si
Bibliografia
[1] S.L. Engel, Basic of Laser Heat Treating, Source book on Applications of the Laser in Metalworking, American Society for Metals, Ed.: E.A. Metzbower, Metals Park (1981) 149-171.
[2] H. Szengel, S. Mordike, H.B. Pruel, Laser Oberflaechenbehandlung-eineProduktionsreifes Verfahren fuer Vielfaeltige Anwendungen, International Conference, In New Technologies of Metals Heat Treatment, Croatian Society for Heat Treatment; Conference Proceeding, Zagreb, Croatia, 1990,1-12.
[3] S. Borik, A. Gieser, Finite Element Analysis of the Transient Behavior of Optical Components under irradiation, Laser-Induced Damage in Optical Materials, Proceedings of the SPIE 1441 (1990) 420-429.
[4] T. Kek, The Influence of Different Conditions in Laser-Beam Interaction in Laser Surface Hardening of Steels, MSc. Thesis, University of Ljubljana, 2003 40-17 (in Slovenian).
[5] C. Courtney, W.M. Steen, The Surface Heat Treatment of Engineering Steel using a 2 kW CO2 Laser, 195-208, Basic of Laser Heat Treating, Source book on Applications of the Laser in Metalworking, American Society for Metals, Ed.: E.A. Metzbower, Metals Park (1981) 149-171.
[6] J. Grum, P. Žerovnik, Residual Stresses in Laser Heat Treatment of Plane Surfaces, Proceedings of the First International Conference on Quenching and Control of Distortion (1992) 333-341.
[7] J. Grum, P. Žerovnik, Laser Hardening of Steels-Part 1, Heat Treating (1993) 16-20.
[8] J Grum, P. Žerovnik, Laser Hardening of Steels-Part 2, Heat Treating (1993) 32-36.
[9] J. Grum, R. Šturm, Microstructure variations in the laser surface remelted layer of nodular iron, International Journal of Microstructure and Materials Properties 1 (2005) 11-23.
[10] M. Zupančič, Precipitation hardening and properties of a maraging steel (in Slovene), Ph.D. Thesis, Faculty of Mechanical Engineering, University of Ljubljana, 2005.
[11] J. Grum, M. Zupančič, J. L. Ocana, Laser Shock Processing of the Maraging Steel Surface, Materials Science Forum - 537-538 (2007) 655-662.
[12] J. Grum, Laser surface hardening. Eds.: G.E. Totten, K. Funatani, L. Xie, Handbook of metallurgical process design, New York, 2004 641-731.
[13] J. Grum, Laser surface hardening. Eds. G.E. Totten, Steel heat treatment, equipment and process design. 2nd ed. Boca Raton, Taylor and Francis (2007) 435-566.
[14] J. Grum, Laser surface hardening, Materials science and technology series 2 (2002).
[15] J. Grum, T. Kek, The influence of different conditions of laser-beam interaction in laser surface hardening of steels, Thin Solid Films 453-454 (2004) 94-99.
[16] J. Grum, R. Šturm, Influence of laser beam guiding and overlapping on residual stress in remelting process, Surface Engineering 21 (2005) 27-34.
[17] J. Grum R. Šturm, Influence of laser surface melt-hardening conditions on residual stresses in thin plates, Surface Coating Technology 100-101 (1998) 455-458.
[18] J. Grum R. Šturm, Residual stress profiles of the laser surface remelted nodular irons, Materials Science Forum 490-491 (2005) 460-468.
[19] J. Grum, J.M. Slabe, The state of differently heat-treated 12% Ni maraging steel after laser remelting, Materials Science Forum 537-538 (2007) 647-654.
[20] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, A. Lisiecki, Comparison of the structures of the hot-work tool steels laser modified surface layers, Journal of Materials Processing Technology 164-165 (2005) 1014-1024.
[21] Z. Liu, P.H. Chong, P. Skeldon, P.A. Hilton, J.T. Spencer, B. Quayle, Fundamental understanding of the corrosion performance of laser-melted metallic alloys, Surface and Coatings Technology 200 (2006) 5514-5525.
[22] C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocana, C. Molpeceres, A. Banderas, J. Porro, M. Morales, Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples, Applied Surface Science 252 (2006) 6201-6205.
[23] J.H. Abbouda, K.Y. Benyounis, A.G. Olabi, M.S.J. Hashmic, Laser surface treatments of iron-based substrates for automotive application, Journal of Materials Processing Technology 182 (2007) 427-431.
[24] U. Sanchez-Santana, C. Rubio-Gonz’alez, G. Gomez-Rosas, J.L. Ocana, C. Molpeceres, J. Porro, M. Morales, Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing, Wear 260 (2006) 847-854.
[25] G. Gomez-Rosas, C. Rubio-Gonzalez, J.L Ocana, C. Molpeceres, J.A. Porro, W. Chi-Moreno, M. Morales, High level compressive residual stresses produced in aluminum alloys by laser shock processing, Applied Surface Science 252 (2005) 883-887.
[26] C. Rubio-Gonzalez, J.L. Ocana, G. Gomez-Rosas, C. Molpeceres, M. Paredesa, A. Banderas, J. Porro, M. Morales, Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy, Materials Science and Engineering A 386 (2004) 291-295.
[27] J. Grum, M. Zupančič, Suitability assessment of replacement of conventional hot-working steels with maraging steel, Part 1, Mechanical properties of maraging steel after precipitation hardening treatment, Zeitschrift für Metallkunde 93/2 (2002) 164-170.
[28] J. Grum, M. Zupanćić, Suitability assessment of replacement of conventional hot-working steels with maraging steel, Part 2, Microstructure of maraging steel after precipitation hardening treatment, Zeitschrift fur Metallkunde 93/2 (2002) 171-176.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BOS5-0019-0097
Identyfikatory