Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BOS4-0021-0048

Czasopismo

Archives of Materials Science

Tytuł artykułu

Fabrication and characterization of TiAl/Ti3Al-based intermetallic composites (IMCs) reinforced with ceramic particles

Autorzy Kevorkijan, V.  Skapin, S. D. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: The purpose of the paper is to fabricate and characterise TiAl/Ti3Albased intermetallic composites (IMCs) reinforced with ceramic particles. Methodology: Composites were formulated by blending commercially available powders of either TiAl or Ti3Al (technical grade with traces of Al and Ti) with ceramic powders (B4C, TiC or TiB2) in appropriate amounts to create titanium aluminide-based matrices with 10, 20, 30, 40 and 50 vol. % of B4C, TiC or TiB2 discontinuous reinforcement. The powder blends were thoroughly mixed and subsequently cold compacted. Findings: Qualitative metallographic analysis of the as-densified microstructures confirmed that during densification of the composite matrix both TiAl and Ti3Al single phase titanium aluminide powders were transformed into various intermetallic phases (TiAl, Ti3Al and TiAl3). Regarding the room temperature tensile properties, excellent tensile strength, tensile yield strength and modulus were measured in all fully dense composite samples, irrespective of their phase composition and volume fraction of reinforcement. Research: Generally, the improvement of tensile strength, tensile yield strength and Young’s modulus was found to correlate with the increase in the amount of ceramic reinforcement in the matrix. However, quite the opposite behaviour was found regarding elongation, where the introduction of ceramic particles into the intermetallic matrix led in all specimens to a significant reduction of elasticity. Value: In all systems and compositions, fully dense composite samples (with a retained porosity less than 1 vol. %) were successfully obtained, revealing the significant industrial potential of this fabrication method.
Słowa kluczowe
PL materiał   kompozyt   Ti-Al   glinek tytanu  
EN material   composite   TiAl   alumina titanium  
Wydawca Komitet Nauki o Materiałach PAN
Czasopismo Archives of Materials Science
Rocznik 2008
Tom Vol. 29, nr 4
Strony 168--183
Opis fizyczny Bibliogr. 26 poz., rys., tabl.
Twórcy
autor Kevorkijan, V.
autor Skapin, S. D.
Bibliografia
[1] Gamma Titanium Aluminide 1999, TMS, Warrendale, PA, 1999, 3.
[2] S. Djanarthany, J.C. Viala, J. Bouix, An Overview of Monolithic Titanium Aluminides Based on Ti3Al and TiAl, Materials Chemistry and Physics 72 (2001) 301-319.
[3] C.M. Ward-Close, R. Minor, P.J. Doorbar, Intermetallic-matrix composites-a review, Intermetallics 4/3 (1996) 217-229.
[4] P.C. Brennan, W.H. Kao, J.M. Yang, The mechanical properties of an Al2O3/Ni3Al particulate-reinforced composite, Materials Science and Engineering A 153 (1992) 635-640.
[5] J.C. Rawers, W. Wrzesinski, Heat treatment of reaction-sintered hot-pressed TiAl, Scripta Metallurgica et Materialia 24/10 (1990) 1985-1990.
[6] H.Y. Sohn. X. Wang, Mathematical and experimental investigation of the self-propagating high-temperature synthesis (SHS) of TiAl3 and Ni3Al intermetallic compounds, Journal of Materials Science 31 (1996) 3281-3288.
[7] G.H. Wang, M. Dahms, An effective method for reducing porosity in the titanium aluminide alloy Ti52Al48 prepared by elemental powder metallurgy, Scripta Metallurgica et Materialia 26/9 (1992) 1469-1474.
[8] G.X. Wang, M. Dahms, G. Leitner, S. Schultrich, Titanium aluminides from coldextruded elemental powders with Al-contents of 25-5 at% Al, Journal of Materials Science 29 (1994) 1847-1853.
[9] T.W. Lee, C.H. Lee, The Effect of Heating Rate on the Reactive Sintering of Ti-48%Al Elemental Powder Mixture, Journal of Materials Science Letters 17/16 (1998) 1367-1370.
[10] G.X. Wang, M. Dhams, Powder Metallurgy International 24 (1992) 219.
[11] G. Leitner, M. Dhams, W. Poeβnecker, B. Wildhagen, Proceedings of International Conference “P/M Aerospace Materials 1991”, MPR Publishing Services Ltd, Shrewsbury, 1992.
[12] F.J.J. Van Loo, G.D. Rieck, Diffusion in the titanium-aluminium system -I. Interdiffusion between solid Al and Ti or Ti-Al alloys Acta Metallurgica 21 (1973) 61-71.
[13] M. Dahms, Formation of titanium aluminides by heat treatment of extruded elemental powders, Materials Science and Engineering A 110 (1989) L5-L8.
[14] W. Misiolek, R.M. German, Reactive sintering and reactive hot isostatic compaction of aluminide matrix composites, Materials Science and Engineering A 144/1-2 (1991) 1-10.
[15] G.X. Wang, M. Dahms, Reaction sintering of cold- extruded, Metallurgia Translation A 24 (1993) 1517.
[16] J.C. Rawers. W.R. Wrzesinski, Reaction-sintered hot-pressed TiAl, Journal of Materials Science 27 (1992) 2877-2886.
[17] K. Taguchi, M. Ayada, K.N. Isihara, P.H. Shingu, Near-net shape processing of TiAl intermetallic compounds via pseudoHIP-SHS route, Intermetallics 3/2 (1995) 91-98.
[18] H.E. Maupin, J.C. Rawers, TiAl composites formed from elemental powders by hotisostatic pressing processing, Journal of Materials Science Letters 12 (1993) 165-167.
[19] H.E. Maupin, J.C. Rawers, Metal- intermetallic composites formed by reaction-sintering elemental powders, Journal of Materials Science Letters 12 (1993) 540-541.
[20] R.G. Rowe, S.C. Huang, Recent developments in titanium aluminide alloys, Israel Journal of Technology 24/1-2 (1988) 255-260.
[21] K.S. Chan. Y.W. Kim, Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy, Metallurgical Transactions A 23 (1992) 1663-1677.
[22] M. Grujicic, G. Cao, Crack Growth in Lamellar Titanium Aluminides Containing Dispersed Beta Phase Precipitates, Journal of Materials Science 37/14 (2002) 2949-2963.
[23] M. Sujata, S. Bhabgava. S. Sangal, On the formation of TiAl3 during reaction between solid Ti and liquid Al, Journal of. Materials Science Letters 16 (1997) 1175-1178.
[24] A.J. Pyzik. D.R. Beaman, Al-B-C Phase Development and Effects on Mechanical Properties of B4C/Al-Derived Composites, Journal of American Ceramic Society 78 (1995) 305-312.
[25] J. Jung, Kang, Advances in Manufacturing Boron Carbide–Aluminum Composites, Journal of American Ceramic Society 87 (2004) 47.
[26] A. Banjeri,W. Reif, Development of Al-Ti-C grain refiners containing TiC, Metallurgical and Materials Transactions A 17 (1986) 2127
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BOS4-0021-0048
Identyfikatory