Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Journal of Achievements in Materials and Manufacturing Engineering

Tytuł artykułu

New organic photochromic materials and selected applications

Autorzy Żmija, J.  Małachowski, M. J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Purpose: The aim of this work is to perform the review of the recent most important results of experimental and theoretical investigations connected with the photochromic materials and their selected applications. Design/methodology/approach: The recent achievements in the field of designing and preparation methods of organic photochromic materials and devices operating as tree-dimensional optical data storage. Findings: We pointed out the important role that play the photochromic effect in organic materials and which can be used as the above mentioned devices. Research limitations/implications: The main disadvantage of organic materials are reported to be to short their lives and weak resistivity to the moist but the improvements are advancing. Originality/value: Our review concerns the most recent findings in this area. We also show some recent examples of photochromic organic material application in 3D memory devices.
Słowa kluczowe
PL fotochromatyczność   materiał organiczny   optoelektronika  
EN photochromism   organic material   optoelectronics  
Wydawca International OCSCO World Press
Czasopismo Journal of Achievements in Materials and Manufacturing Engineering
Rocznik 2010
Tom Vol. 41, nr 1-2
Strony 48--56
Opis fizyczny Bibliogr. 30 poz., rys., tabl.
autor Żmija, J.
autor Małachowski, M. J.
  • Institute of Technical Physics, Military University of Technology, ul. S. Kaliskiego 2, 00-908 Warszawa, Poland,
[1] W. Wardzyński, T. Łukasiewicz, J. Żmija, Revrsible photochromc effects in single crystals of bismuth germanium Bi12GeO20, and bismuth silicn oxide Bi12SiO20 Optics Communications 30 (1979) 203-205.
[2] J. Żmija, M. J. Małachowski, Photochromc effects in sillenite single crystals, Archives of Materials Science and Engineering 33/2 (2009) 101-106.
[3] G. M. Tsivgoulis,
[4] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, High- Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structuress, Japaneese Journal of Applied Physics 34 (1995) L797-L799.
[5] Y. Martin, S. Rishton, H.K. Wickramasinghe, Optical data storage read out at 256 Gbits/in2, Applied Physics Letters 71 (1997) 119458-119460.
[6] T. Tsujioka and M. Irie, Fluorescence Readout of Near-Field Photochromic Memory, Applied Optics 37 (1998) 4419-4424.
[7] M. Uchida, M. Irie, Two-photon photochromism of a naphthopyran derivative, Journal American Chemical Society 115 (1993) 6442-6443.
[8] Photoreactive Materials for Ultrahigh-Density Optical Memory; Irie, M., Ed.; Elsevier, Amsterdam, 1994.
[9] H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout, Applied Physics Letters 74 (1999) 1338-40.
[10] S. Kawata†, Y. Kawata, Three-Dimensional Optical Data Storage Using Photochromic Materials, Chemical Review 100 (2000) 17771788-17771792.
[11] J. Fritzsche, Comptes Rendus Academique Science, 69 (1867) 1035-1039.
[12] E. ter Meer. Annales Chemic 181 (1876) 1-4.
[13] W. Markwald, Zeitzrift Physk, Chemik 30 (1899) 140-144.
[14] Y. Hirshberg, Compting Rendal Academic Science 231 (1950) 903-907.
[15] G. H. Brown (Ed.), Photochromism. Wiley-Intersciences, New York, 1971.
[16] H. Bouas-Laurent, H. Durr, Organic photochromism IUPAC, Pure and Applied Chemistry 73 (2001) 639-665.
[17] D. A. Parthenopoulos, P. M. Rentzepis, Three-Dimensional Optical Storage Memory, Science 245 (1989) 843-845.
[18] A. S. Dvornikov, S.E. Esener, P.M. Rentzepis, Optical Computing Hardware, Ch. 11, AT&T and Acad. Press 1994.
[19] M. Uchida, M. Irie, Two-photon photochromism of a naphthopyran derivative, Journal of American Chemical Society 115/14 (1993) 6442-6443.
[20] D. A. Parthenopoulos, P.M. Rentzepis, Three-Dimensional Optical Storage Memory, Science 245 (1989) 843-845.
[21] A. S. Dvornikov, P. M. Rentzepis, Accessing 3D memory information by means of nonlinear absorption, Optics Communications 119 (1995) 341-346.
[22] A. Toriumi, J. M. Herrmann, S. Kawata, Nondestructive readout of a three-dimensional photochromic optical memory with a near-infrared differential phase-contrast microscope, Optics Letters 22 (1997) 555-557.
[23] R. M. Hamano, M. Irie, Rewritable Near-Field Optical Recording on Photochromic Thin Films, Japaneese Journal of Applied Physics 35 (1996) 1764-1767.
[24] A. Toriumi, S. Kawata, M. Gu, Reflection confocal microscope readout system for three-dimensional photochromic optical data storage, Optics Letters 23 (1998) 1924-1926.
[25] Y. Kawata, H. Ishitobi, S. Kawata, Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory, Optics Letters 23 (1998) 756-758.
[26] C. Wang, H. Fei, Y. Yang, Z. Wei, Y. Qiu, Y. Chen, Photoinduced anisotropy and polarization holography in azobenzene side-chain polymer, Optics Communications 159 (1999) 58-62.
[27] D. Day, M. Gu, Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer, Applied Optics 37 (1998) 6299-6304.
[28] A. S. Dvornikov, P. M. Rentzepis, Novel organic ROM materials for optical 3D memory devices, Optics Communications 136 (1997) 1-6.
[29] S. W. Hell, M. Booth, S. Wilms, C. M. Schnetter, A. K. Kirsch, D. J. ArndtJovin, T. M. Jovin, Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation, Optics Letters 23 (1998) 1238-1240.
[30] M. Gu, D. Day, Use of continuous-wave illumination for two-photon three-dimensional optical bit data storage in a photobleaching polymer, Optics Letters 24 (1999) 288-290.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BOS2-0022-0081