Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The microstructure and mechanical properties of the alloy CuZn30 after recrystallizion annealing

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Purpose: The aim of the investigations is to determine the influence of the recrystallization temperature on the microstructure and mechanical properties of the brass CuZn30 subjected to cold deformation in the process of rolling at various degrees of strain. Design/methodology/approach: The brass CuZn30 was recrystallization annealed within the temperature range of 300-650°C after cold rolling with the strain of 15.8-70.2%. The tensile test was carried out by the use of universal testing machine. Metallographic observations were performed on an optical microscope and fractographic tests on a scanning electron microscope. The hardness was also measured. Findings: The analysis of the results of investigations concerning the mechanical properties permitted to determine the effect of the temperature of recrystallization annealing on the strength and plastic properties of the investigated brass, subjected to cold deformation with a varying strain in the course of rolling. The character of fracture after decohesion in the tension test was determined basing on fractographic investigations. Practical implications: An increase of the recrystallization temperature within the range of 400-650°C results in a deterioration of the mechanical properties of the brass CuZn30 and an increase of its plastic properties. Originality/value: The results of the investigation revealed the occurrence of the phenomenon of heterogeneous plastic deformation in the recrystallized alloy.
Opis fizyczny
Bibliogr. 16 poz., rys., tabl.
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland,
  • [1] R. Nowosielski, Ductility minimum temperature in selected mono-phase, binary brasses, Journal of Materials Processing Technology 109 (2001) 142-153.
  • [2] J. Freudenberger, A. Kaumann, H. Klauß, T. Marr, K. Nenkov, V. Subramanya Sarma, L. Schultz, Studies on recrystallization of single-phase copper alloys by resistance measurements, Acta Materialia (2010) in print.
  • [3] M. Staszewski, Z. M. Rdzawski, A. Wrona, Residual stresses in the strips from copper-based alloys, Journal of Achievements in Materials and Manufacturing Engineering 25/2 (2007) 35-38.
  • [4] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, The influence of the temperature of tensile test on the structure and plastic properties of copper alloy type CuCr1Zr, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 123-136.
  • [5] W. Ozgowicz, The relationship between hot ductility and intragranular fracture in a CuSn6P alloy at elevated temperatures, Journal of Materials Processing Technology 162-163 (2005) 392-401.
  • [6] A. Heinrich, T. Al-Kassab, R. Kirchheim, Investigation of new aspects in the initial stages of decomposition of Cu2at.%Co with the tomographic atom probe and the field ion microscope, Surface and interface analysis 39 (2007) 240-245.
  • [7] L. Kommel, I. Hussainova, O. Volobueva, Microstructure and properties development of copper during severe plastic deformation, Materials and Design 28 (2007) 2121-2128.
  • [8] R. Nowosielski, P. Sakiewicz, J. Mazurkiewicz, Ductility minimum temperature phenomenon in as cast CuNi25 alloy, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 193-196.
  • [9] A. Portevin, F. Le Chatelier, Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation, Comptes Rendus de l'Académie des Sciences Paris 176 (1923) 507-510.
  • [10] Z. Kovàcs, Portevin-Le Chatelier plastic instabilities, PhD Thesis-Unpublished, Main Library of Eötcös Loránd Univeritet, Budapest, 2002.
  • [11] W. Ozgowicz, B. Opeldus, The influence of the chemical composition and temperature of plastic deformation on the PLC effect in tin bronzes, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 129-132.
  • [12] A. Sarkar, L. Charles, Recurrence analysis of the Portevin-Le Chatelier effect, Physics Letters A 372 (2008) 1101-1105.
  • [13] K. Darowicki, J. Orlikowski, A. Zieliński, Investigation of changes in the type B PLC effect of Al-Mg-Cu type alloy for various strain rates, Materials Science and Engineering A 496 (2008) 478-482.
  • [14] A. Korbel, Scientific Bulletins of the S. Staszic, University of Mining and Metallurgy, No 474, Metallurgy and Foundry Practice, Bull. 65, „The analyses of the non-uniform deformation in the substitutional solid solutions”, Cracow, 1974.
  • [15] A. Poznańska, J. Sieniawski, The Portevin-Le Chatelier effect in EI-867 nickel superalloy, Materials Engineering 1 (1999) 15-19.
  • [16] J. W. Wyrzykowski, E. Pleszakow, J. Sieniawski, Deformation and cracking of metals, WNT, Warsaw, 1999.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.