PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Salzgitter-Salder Quarry (Lower Saxony, Germany) and Slupia Nadbrzezna river cliff section (central Poland) : a proposed candidate composite Global Boundary Stratotype Section and Point for the Coniacian Stage (Upper Cretaceous)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An integrated account of a candidate composite Global Boundary Stratotype Section and Point for the base of the Coniacian Stage, comprising the Salzgitter-Salder Quarry section (Lower Saxony, Germany) and the Słupia Nadbrzeżna river cliff section (central Poland), is provided. Documented are all the main biostratigraphically significant macrofossil and microfossil groups: ammonites, bivalves (inoceramids and the genus Didymotis), planktonic foraminifera and calcareous nannoplankton. also provided are correlations based on stable carbon isotope curves. The base of the Coniacian is defined by the first occurrence (FO) of the inoceramid bivalve Cremnoceramus deformis erectus (Meek, 1876), a cladogenetic successor of the C. waltersdorfensis (Andert, 1911) lineage. This event is well above the first appearance of the classic ammonite marker of this boundary, Forresteria petrocoriensis (Coquand, 1859), which is first noted high in the Upper Turonian Mytiloides scupini inoceramid bivalve zone at Słupia Nadbrzeżna. The boundary at Salzgitter-Salder cannot be precisely defined by means of ammonites; however, there is an apparent local change in one scaphitid lineage a short distance below the boundary. In calcareous nannofossil terms, the boundary falls within the interval between the first occurrence of Broinsonia parca parca and the last occurrence (LO) of Helicolithus turonicus. at present, no planktonic species found in both sections can be used as a close proxy for the base of the Coniacian, as defined by the inoceramid bivalve marker. In terms of carbon stable isotopes, the Turonian Coniacian Boundary lies in the inflection point from falling to rising [delta^13]C values. a comparison of the Salzgitter-Salder and Słupia Nadbrzeżna carbon isotope curves indicates a hiatus at the former locality. The base of the Coniacian in the Salzgitter-Salder section is marked by a flood occurrence of Cremnoceramus deformis erectus, constituting the deformis erectus I event. The boundary interval at Słupia Nadbrzeżna is expanded: here the first occurrence of C. deformis erectus is separated from both the terminal Turonian C. waltersdorfensis waltersdorfensis event and the C. deformis erectus I event, also indicating the existence of a hiatus at the boundary in the Salzgitter-Salder section. In view of this hiatus at the critical level, it is proposed that the two sections should constitute a candidate composite Coniacian GSSP.
Rocznik
Strony
445--477
Opis fizyczny
Bibliogr. 74 poz.,Rys., tab.,
Twórcy
autor
autor
autor
autor
autor
  • Institute of Geology, University of Warsaw, Al. Żwirki i Wigyry 93, PL-02-089 Warszawa, Poland, i.walaszczyk@uw.edu.pl
Bibliografia
  • 1. Bailey, H.W. and Hart, M.B. 1979. The Correlation of the Early Senonian in Western Europe using Foraminiferida. In: J. Wiedmann (Ed.), Aspekte der Kreide Europas, International Union of Geological Sciences, A6, 159–170.
  • 2. Caron, M. 1985. Cretaceous planktonic foraminifera. In: H.M. Bolli, J.B. Saunders and K. Perch-Nielsen (Eds), Plankton stratigraphy, pp. 17–86. Cambridge University Press; Cambridge.
  • 3. Čech, S. 1989. Upper Cretaceous Didymotis events from Bohemia. In: J. Wiedmann (Ed.), Cretaceous of the Western Tethys. Proceedings of the 3rd International Cretaceous Symposium, Tübingen 1987, 675–676. E. Schweizerbart’sche Verlagsbuchhandlung; Stuttgart.
  • 4. Čech, S. and Švábenická, L. 1992. Macrofossils and nannofossils of the type location of the Brezno Formation (Turonian-Coniacian, Bohemia). Vestník Ceského Geologického ústavu, 67, 311–326.
  • 5. Cobban, W.A., Walaszczyk, I., Obradovich, J.D. and Mckinney, K.C. 2006. A USGS zonal table for the Upper Cretaceous Middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. US Geological Survery Open-File Report 2006-TBA, 45 pp.
  • 6. Dahmer, D.-D. and Eernst, G. 1986. Upper Cretaceous eventstratigraphy in Europe. Lecture Notes in Earth Science, 8, 353–362.
  • 7. Diebold, F., Bengtson, P., Lees, J. and Walaszczyk, I. 2010. Ammonite, inoceramid and nannofossil biostratigraphy across the Turonian–Coniacian boundary in the Aquitaine and Vocontian basins (France) and Ddiego Basin (Madagascar). 8th International Symposium Cephalopods - Present and Past, Dijon, France, August 30th to September 3rd, 2010, Abstract Volume.
  • 8. Ernst, G. and Wood, C.J. 1995. Die tiefere Oberkreide des subherzynen Niedersachsens. Terra Nostra, 5/95, 41–84.
  • 9. Ernst, G., Schmid, F. and Seibertz, E. 1983. Event-Stratigraphie im Cenoman und Turon von NW-Deutschland. Zitteliana, 10, 531–554.
  • 10. Gale, A.S. 1996. Turonian correlation and sequence stratigraphy of the Chalk in southern England, Geological Society Special Publication, 103, 177–195.
  • 11. Gonzales-Donoso, J-M. and Linares, D. 1990. The planktonic foraminifera. In: F. Robaszynski, M. Caron, C. Dupuis, F. Amédro, J.-M. Gonzales-Donoso, D. Linares, J. Hardenbol, S. Gartner, F. Calandra and R. Delofre (Eds), A tentative integrated stratigraphy in the Turonian of Central Tunisia: formations, zones and sequential stratigraphy in the Kalaat Senan area. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 14, 281–361.
  • 12. Hancock, J.M. 1991. Ammonite scales for the Cretaceous system. Cretaceous Research, 12, 259–291.
  • 13. Hart, M.B., Bailey, H.W., Crittenden, S., Fletcher, B.N. and Swiecicki, A. 1989. Cretaceous. In: D.G. Jenkins and J.W. Murray (Eds), Stratigraphical Atlas of Fossil Foraminifera, second edition. British Micropalaeontological Society Series, pp. 273–371. Ellis Horwood Limited; Chichester.
  • 14. Hasegawa, T. 2003. A global carbon-isotope event in the Middle Turonian (Cretaceous) sequences in Japan and Russian Far East. Proceedings of the Japan Academy, Series B, 79, 141–144.
  • 15. Hasegawa, T., Pratt, L.M., Maeda, H., Shigeta, Y., Okamoto, T., Kase, T. and Uemura, K. 2003. Upper Cretaceous stable carbon isotope startigraphy of terrestrial organic matter from Sakhalin, Russian Far East: a proxy for the isotopic composition of paleoatmospheric CO2 Palaeogeography Palaeoclimatology Palaeoecology, 189, 97–115.
  • 16. Jarvis, I., Gale, A.S., Jenkyns, H.C. and Pearce, M. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological Magazine, 143, 561–608.
  • 17. Jenkyns, H.C., Gale, A.S. and Corfield, R.M. 1994. Carbonand oxygen-isotope stratigraphy of the English Chalk andItalian Scaglia and its palaeoclimatic significance. Geological Magazine, 131, 1–34.
  • 18. Kaczorowski A. 2000. An occurrence of the uppermost Turonian ammonite zonal index, Prionocyclus germari (Reuss, 1845) at Brzeżno, south-western margin of the Holy Cross Mountains, central Poland. Acta Geologica Polonica, 50, 243–246
  • 19. Kaplan, U. 1986. Ammonite stratigraphy of te Turonian of NW Germany. Newsletters on Stratigraphy, 17, 9-20.
  • 20. Kaplan, U. 1988. Die Ammoniten-Subfamilie Collignoniceratinae Wright & Kennedy 1951 aus dem Turon (Oberkreide) von Westfalen und Niedersachsen (NW-Deutschland). Geologie und Paläontologie in Westfalen, 12, 5–45.
  • 21. Kaplan, U. and Kennedy, W.J. 1994. Die Ammoniten des westfälischen Coniac. Geologie und Paläontologie in Westfalen, 31, 1–155.
  • 22. Kaplan, U. and Kennedy, W.J. 1996. Upper Turonian and Coniacian ammonite stratigraphy of Westphalia, NW Germany. Acta Geologica Polonica, 46, 305–352.
  • 23. Kaplan, U., Kennedy, W.J. and Wright, C.W. 1987. Turonian and Coniacian Scaphitidae from England and North-Western Germany. Geologisches Jahrbuch, A103, 5–39.
  • 24. Kaplan, U. and Schmid, F. 1988. Die heteromorphen Ammoniten der Gattungen Eubostrychoceras und Hyphantoceras aus demTuron NW-Deutschlands. Geologie und Paläontologie in Westfalen, 12, 47–87.
  • 25. Kauffman, E.G. 1973. Cretaceous Bivalvia. In: A. Hallam(Ed.), Atlas of Palaeobiogeography, pp. 353-383. Elsevier Scientific Publishing Company; Amsterdam – London – New York.
  • 26. Kauffman, E.G., Kennedy, W.J. and Wood, C.J. 1996. The Coniacian stage and substage boundaries. Bulletin de l’Institut Royal des Sciences naturelles de Belgique, Sciences de la Terre, 66 (Supplement), 81–94.
  • 27. Kennedy, W.J. 1984a. Systematic palaeontology and stratigraphic distribution of the ammonite faunas of the French Coniacian. Special Papers in Palaeontology, 31, 1–160.
  • 28. Kennedy, W.J. 1984b. Ammonite faunas and the „standard zones“ of the Cenomanian to Maastrichtian Stages in their type areas, with some proposals for the definition of the stage boundaries by ammonites. Bulletin of the Geological Society of Denmark, 33, 147–161.
  • 29. Kennedy, W.J. and Cobban, W.A. 1991. Coniacian ammonite faunas from te United States Western Interior. Special Papers in Palaeontology, 45, 96 pp.
  • 30. Kennedy, W.J. and Walaszczyk, I. 2004. Forresteria (Harleites) petrocoriensis (Coquand, 1859) from the Upper Turonian Mytiloides scupini Zone of Słupia Nadbrzeżna, Poland. Acta Geologica Polonica, 54, 55–59.
  • 31. Küchler, T. 1998. Upper Cretaceous of the Barranca (Navarra, northern Spain); integrated litho-, bio- and event stratigraphy. Part I. Cenomanian through Santonian. Acta Geologica Polonica, 48, 157–236.
  • 32. Küchler, T. and Ernst, G. 1989. Integrated biostratigraphy of the Turonian-Coniacian transition interval in northern Spain with comparison to NW Germany. In: Wiedmann, J. (Ed.), Cretaceous of the Western Tethys. Proceedings 3rd International Cretaceous Symposium, Tübingen 1987, pp. 161–190. E. Schweizerbart’sche Verlagsbuchhandlung; Stuttgart
  • 33. Langenhan, A. and Grundey, M. 1891. Das Kieslingswalder Gestein und seine Versteinerungen. Jahresbericht des Glatzer Gebirgs-Vereins, 10, 1–12.
  • 34. Lees, J.A. 2008. The calcareous nannofossil record across the Late Cretaceous Turonian/Coniacian boundary, including new data from Germany, Poland, the Czech Republic and England. Cretaceous Research, 29, 40–64.
  • 35. Loeblich, A.R., Tappan, H.N. 1987. Foraminiferal genera and their classification, 970 pp. Van Nostrand Reinhold Company; New York.
  • 36. Niebuhr, B., Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Voigt, T., Wiese, F. and Wilmsen, M. 2007. Lithostratigraphie der norddeutschen Oberkreide. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 55, 1–136.
  • 37. Obradovich, J.D. 1993. A Cretaceous time scale. In: Caldwell, W.G.E. and Kauffman, E.G. (Eds), Evolution of the Western Interior Basin. Geological Association of Canada, Special Paper, 39, 379–396.
  • 38. Ogg, J.G., Agtenberg, F.P. and Gradstein, F.M. 2004. The Cretaceous Period. In: F.M. Gradstein, J. Ogg and A. Smith (Wds), A Geologic Time Scale 2004, pp. 344–383, Cambridge University Press, Cambridge.
  • 39. Pesagno, E.A. Jr. 1967. Upper Cretaceous planktonic foraminifera from the Western Gulf Coastal Plain. Palaeontographica Americana, 5, 259–441.
  • 40. Pożaryska, K. and Peryt, A. 1979. The Late Cretaceous and Early Paleocene Foraminiferal “Transitional Province” in Poland. In: J. Wiedmann (Ed.), Aspekte der Kreide Europas. International Union of Geological Sciences, A6, 293–304.
  • 41. Premoli Silva, I., Sliter, W.V. 1995. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione section, Gubbio, Italy. Paleontographia Italica, 82 (1994), 1–89.
  • 42. Premoli Silva, I. and Verga, D. 2004. Practical Manual of Cretaceous Planktonic Foraminifera. In: D. Verga and R. Rettori (Eds), International School on Planktonic Foraminifera, 30 Course. Cretaceous. 283 pp. Universities of Perugia and Milan, Tipografia Pontefelcino; Perugia.
  • 43. Robaszynski, F. and Caron, M. (Eds) and European Working Group on Planktonic Foraminifera. 1979. Atlas de foraminifères planctoniques du Crétacé moyen (mer boreale et Téthys). Cahiers de Micropaléontologie, 1-2, 1–366.
  • 44. Robaszynski, F., Caron, M., Dupuis, C., Amédro, F., Gonzales Donoso, J.M., Linares, D., Hardenbol, J., Gartner, S., Calandra, F. and Deloffre, R. 1990. a tentative integrated stratigraphy in the Turonian of Central Tunisia: Formationes, zones and sequential stratigraphy in the kalaat Senan area. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 14, 213–384.
  • 45. Scheck-Wenderoth, M., Krzywiec, P., Zühlke, r., Maystrenko, Y. and Froitsheim, N. 2008. Permian to Cretaceous tectonics. In: McCann, T. (Ed.), The Geology of Central Europe, Volume 2: Mesozoic and Cenozoic, pp. 999–1030. The Geological Society, London; London.
  • 46. Schlüter, C. 1871-76. Cephalopoden der oberen deutschen Kreide, 264 pp.Bonn.
  • 47. Scott, G.R. and Cobban, W.A. 1964. Stratigraphy of the Niobrara Foramtion at Pueblo, Colorado. Geological Survey Professional Paper, 454-L, 30 pp.
  • 48. Sikora, P.J., Howe, R.W., Gale, A.S. and Stein, J.A. 2004. Chronostratigraphy of proposed Turonian – Coniacian (Upper Cretaceous) stage boundary stratotypes: Salzgitter-Salder, Germany, and Wagon Mound, New Mexico, USA. In: A.B. Beaudoin and M.J. Head (Eds), The Palynology and Micropalaeontology of Boundaries. Geological Society, London, Special Publications, 230, 207–242.
  • 49. Stoll, H.M., and Schrag, D.P. 2000. High resolution stable isotope records from the upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? Geological Society of America Bulletin, 112, 309–319.
  • 50. Tur, N.A., Smirnov, J.P. and Huber, B. 2001. Late Albian – Coniacian planktic foraminifera and biostratigraphy of the northeastern Caucasus. Cretaceous Research, 22, 719–734.
  • 51. Voigt, S. and Hilbrecht, H. 1997. Late Cretaceous carbon isotope stratigraphy in Europe: Correlation and relations with sea level and sediment stability. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 39–60.
  • 52. Voigt, S., Flögel, S. and Gale, A.S. 2004. Midlatitude shelf seas in the Cenomanian-Turonian greenhouse world: temperature evolution and North Atlantic circulation. Paleoceanography, 19, doi: 10.1029/2004PA001015.
  • 53. Walaszczyk, I. 1992. Turonian through Santonian deposits of the Central Polis Upland; their facies development, inoceramid paleontology and stratigraphy. Acta Geologica Polonica, 42, 1–122.
  • 54. Walaszczyk, I. 2000. Inoceramid bivalves at the Turonian/Coniacian boundary: biostratigrapy, events and diversity trend. Acta Geologica Polonica, 50, 421–430.
  • 55. Walaszczyk, I. and Cobban, W.A. 1999. The Tuironian – Coniacian boundary in te United States Western Interior. Acta Geologica Polonica, 48, 495–507.
  • 56. Walaszczyk, I. and Cobban, W.A. 2000. Inoceramid faunas and biostratigraphy of the Upper Turonian–Lower Coniacian of the Western Interior of the United States. Special Papers in Palaeontology, 64, 1–118.
  • 57. Walaszczyk, I., Kopaevich, L.F. and Olferiev, A.G. 2004. Inoceramid/foraminiferal succession of the Turonian and Coniacian (Upper Cretaceous) of the Briansk region (Central European Russia). Acta Geologica Polonica. 54, 597–609.
  • 58. Walaszczyk, I. and Peryt, D., 1998. Inoceramid-foraminiferal biostratigraphy of the Turonian through Santonian deposits of the Middle Vistula Section, Central Poland. Zentralblatt für Geologie und Paläontologie I, 11/12, 1501–1513.
  • 59. Walaszczyk, I. and Wood, C.J. 1999. Inoceramids and biostratigraphy at the Turonian/Coniacian boundary; based on the Salzgitter-Salder quarry, Lower Saxony, Germany, and the Słupia Nadbrzeżna section, central Poland. Acta Geologica Polonica, 48, 395–434.
  • 60. Walaszczyk. I. and Wood, C.J. 2008. Turonian-Coniacian boundary; definition, recognition and stratotype problems. International Geological Congress, Oslo 2008, August 6-14.
  • 61. Wiese, F. 1999. Stable isotope data (δ13C, δ18O) from the Middle and Upper Turonian (Upper Cretaceous) of Liencres (Cantabria, northern Spain) with a comparison to northern Germany (Söhlde & Salzgitter-Salder). Newsletters on Stratigraphy, 37, 37–62.
  • 62. Wiese, F. 2000. New and little known ammonites from the Turonian and Lower Coniacian (Upper Cretaceous) of Lower Saxony, Saxony-Anhalt and Saxony (Germany). Acta Geologica Polonica, 50, 407–419.
  • 63. Wiese, F. 2009. Additional Prionocyclus germari (Reuss, 1845) (Cretaceous Ammonoidea, Upper Turonian) from NW Germany. Berliner Paläobiologische Abhandlungen, 10, 361–371.
  • 64. Wiese, F. and Kaplan, U. 2001. The potential of the Lengerich section (Münster Basin, northern Germany) as a possible candidate Global boundary Stratotype Section and Point (GSSP) for the Middle/Upper Turonian boundary. Cretaceous Research, 22, 549–563.
  • 65. Wiese, F. and Kröger, B. 1998. Evidence for a shallowing event in the Upper Turonian (Cretaceous) Mytiloides scupini Zone of northern Germany. Acta Geologica Polonica, 48, 265–284.
  • 66. Wiese, F., Wood, C.J. and Kaplan, U. 2004b. 20 years of event stratigraphy in NW Germany; advances and open questions. Acta Geologica Polonica, 54, 639–656.
  • 67. Wiese, F., Wood, C.J. and Wray, D.S. 2004a. New advances in the stratigraphy and geochemistry of the German Turonian (Late Cretaceous) tephrostratigraphic framework. Acta Geologica Polonica, 54, 657–671.
  • 68. Wood, C.J. and Ernst, G. 1995. Die tiefere Oberkreide des subherzynen Niedersachsens. Terra Nostra. Schriften der Alfred-Wegener Stiftung, 5 (65 Jahrestagung der Paläontologischen Gesellschaft), 41–84.
  • 69. Wood, C.J., Ernst, G. and Rasemann, G. 1984. The Turonian-Coniacian stage boundary in Lower Saxony (Germany) and adjacent areas: the Salzgitter-Salder quarry as a proposed international standard section. Bulletin of the Geological Society of Denmark, 33, 225-238.
  • 70. Wood, C.J. and Ernst, G. 1998. Turonian-Coniacian of Salzgitter-Salder. In: J. Mutterlose, A. Bornemann, S. Rauer, C. Spaeth and C.J. Wood (Eds), Key localities of the northwest European Cretaceous. Bochumer Geologische und Geotechnische Arbeiten, 48, 94–102.
  • 71. Wood, C.J., Walaszczyk, I., Mortimore, R.N. and Woods, M.A. 2004. New observations on the inoceramid biostratigraphy of the higher part of the Upper Turonian and the Turonian – Coniacian boundary transition in Poland, Germany and the UK. Acta Geologica Polonica, 54, 541–549.
  • 72. Wray, D.S. 2000. Identification and long-range correlation of bentonites in Turonian–Coniacian (Upper Cretaceous) chalks of northwest Europe. Geological Magazine, 136, 361–371.
  • 73. Wright, C.W. 1979. The ammonites of the English Chalk Rock (Upper Turonian). Bulletin of the British Museum (Natural History) (Geology series), 31, 281–332.
  • 74. Zimmermann, E. 1914. Puzosia Rauffi n. sp., Puzosia Denisoniana Stol. in der Oberern Kreide Norddeutschlands und die Loben der bisher bekannten Puzosia-Arten. Jahrbuch der Königlich Preussischen Geologischen Landesanstalt und Bergakademie zu Berlin, 33, 533–556.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3062-2063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.