Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthrusting remagnetization of the Krizna nappe: high resolution palaeo- and rock magnetic study in the Strazovce section, Strazovske vrchy Mts, Central West Carpathians (Slovakia)

Warianty tytułu
Języki publikacji
Palaeomagnetic studies of the uppermost Jurassic to lower Cretaceous pelagic carbonates in the Krizna nappe in the Strazovske vrchy Mts (Central West Carpathians, Slovakia) revealed the presence of secondary magnetite-related magnetization of exclusively normal polarity (component B), which was most probably acquired during the thrusting episode in the late Cretaceous. Three formations exposed in the Strazovce section were the subject of investigation: Jasenina Kimmeridgian.Tithonian), Osnica (Lower.Middle Berriasian) and Mraznica (Upper Berriasian.Hauterivian). Component B is ubiquitous throughout the section but is strongest in the Mraznica Formation. This formation contains a lot of superparamagnetic particles and shows rock magnetic characteristics typical of chemically remagnetized carbonates. The remaining two formations, although also remagnetized, bear traces of an older, probably primary magnetization (component C). The fold test for component B is apparently positive; however the inclination in pre-folding coordinates is too steep for any expected palaeoinclination of Jurassic to recent age. Additional tectonic correction must be applied to match the palaeoinclinations with expected values. Although there is some uncertainty in this additional correction, all plausible options suggest that the rocks must have been magnetized when they dipped in the opposite direction to the thrusting direction. This interpretation is concordant with the internal tectonics of the Krizna nappe, consisting of imbricated units of duplex-type structure.
Opis fizyczny
Bibliogr. 77 poz.,Rys., tab, wykr.,
  • Polish Geological Institute, Rakowiecka 4, 00-975 Warszawa, Poland,
  • Aiello, I.W., Hagstrum, J.T. and Principi, G. 2004. Late Miocene remagnetization within the internal sector of the Northern Appenines, Italy. Tectonophysics, 383, 1–14.
  • Aubourg, C. and Chabert-Pellline, C. 1999. Neogene remagnetization of normal polarity in the late Jurassic black shales from the southern Subalpine Chains (French Alps). Evidence for late anticlockwise rotations. Tectonophysics, 308, 473–486.
  • Bac-Moszaszwili, M., Gamkrelidze, I.P., Jaroszewski, W., Schroeder, E., Stojanov, S.S. and Tzankov, T.V. 1981. Thrust zone of the Križna nappe at Stoły in the Tatra Mts (Poland). Studia Geologica Polonica, 68, 61–73.
  • Bac-Moszaszwili, M., Jaroszewski, W. and Passendorfer, E. 1984. W sprawie tektoniki Czerwonych Wierchów i Giewontu w Tatrach (On the tectonics of Czerwone Wierchy and Giewont area in the Tatra Mts, Poland), Annales Societatis Geologorum Poloniae, 52, 67–88.
  • Besse, J. and Courtillot, V. 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. Journal of Geophysical Research, 107(B11), 2300, doi: 10.1029/2000JB000050. EPM 6.
  • Besse, J. and Courtillot, V. 2003. Correction to “Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr”. Journal of Geophysical Research, 108(B10), 2469, doi: 10.1029/2003JB002684. EPM 3.
  • Channell, J.E.T. and McCabe, C. 1994. Comparison of magnetic hysteresis parameters of unremagnetized and remagnetized limestones. Journal of Geophysical Research, 99, B3, 4613–4623.
  • Day, R., Fuller, M.D. and Schmidt, V.A. 1977. Hysteresis properties of titanomagnetites: grain size and composition dependent. Physics of the Earth and Planetary Interiors, 13, 260–266.
  • Dinarés-Turell, J. and García-Senz, J. 2000. Remagnetization of lower Cretaceous limestones from the southern Pyrenees and relation to the Iberian plate geodynamic evolution. Journal of Geophysical Research, 105, B8, 19405–19418.
  • Dunlop, D. 2002a. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc), 1, theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research., 107, 10.1029/2001JB000486, 2002.
  • Dunlop, D. 2002b. Theory and application of the day plot (Mrs/Ms versus Hcr/Hc), 2, Application to data for rocks, sediments, and soils, Journal of Geophysical Research, 107, 10.1029/2001JB000487, 2002.
  • Elmore, R. D., Campbell, S., Banerjee, S. and Bixler, G. 1998. Paleomagnetic dating of ancient fluid flow events in the Arbuckle Mointains, S. Oklahoma. in: Parnell, J. (ed.), Dating and duration of fluid flow and fluid rock interaction. Geological Society, London, Special Publications, 144, 9–25.
  • Elmore, R.D., Cates, K., Gao, G. and Land, L. 1994. Geochemical constraints on the origin of secondary magnetizations in the Cambro–Ordovician Royer Dolomite, Arbuckle Mountains, southern Oklahoma. Physics of the Earth and Planetary Interiors, 85, 3–14.
  • Elmore, R.D., Lee-Egger Foucher, J., Evans, M., Lewchuk M. and Cox, E. 2006. Remagnetization of the Tonoloway Formation and the Helderberg Group in the Central Appalachians: testing the origin of syntilting magnetizations. Geophysical Journal International, 166, 1062–1076.
  • Elmore, R.D., London, D., Bagley, D. and Gao, G. 1993. Remagnetization by basinal fluids. Testing the hypothesis in the Viola Liumestone, southern Oklahoma. Journal of Geophysical Research, 98, 6237–6254.
  • Enkin, R. J., Osadetz, K. G., Beker, J. and Kisilevsky, G. 2000. Orogenic remagnetizations in the Front Ganges and inner Foothills of the southern Canadian Cordillera: Chemical harbinger and thermal handmaiden of Cordilleran deformatons. Geological Society of America, Bulletin, 112, 6, 929–942.
  • Fruit, D., Elmore, R.D. and Halgedahl, S. 1995. Remagnetization of the folded Belden Formation. Northwest Colorado. Journal of Geophysical Research, 100, B8, 15009–15023.
  • Grabowski, J. 2000. Palaeo- and rock magnetism of Mesozoic carbonate rocks in the Sub-Tatric series (Central West Carpathians) – palaeotectonic implications. Polish Geological Institute, Special Papers, 5, 1–88.
  • Grabowski, J. 2005. New Berriasian palaeopole from the Central West Carpathians (Tatra Mountains, southern Poland): does it look Apulian? Geophysical Journal International, 161, 65–80.
  • Grabowski, J. and Pszczółkowski, A. 2006. Magneto- and biostratigraphy of the Tithonian – Berriasian pelagic sediments In the tatra Mountains (central Western Carpathians, Poland): sedimentary and rock magnetic changes At the Jurassic/Cretaceous boundary. Cretaceous Research, 27, 398–417.
  • Gradstein, F., Ogg, J. and Smith, A. 2004. A Geologic time Scale 2004, 589 pp. Cambridge University Press.
  • Henry, B., Rouvier, H., le Goff, M., Leach, D., Macquar, J-D., Thibieroz, J. and Lewchuk, M.T. 2001. Palaeomagnetic dating of widespread remagnetization on the southeastern border of the French Massif Central and implications for fluid flow and Mississippi Valley-type mineralization. Geophysical Journal. International, 145, 368–380.
  • Hillegeist, T. K., Fruit, D.J. and Elmore, R.D. 1992. Syndeformational magnetization in the Ordovician Bigfork Chert at Black Knob Ridge, western Ouachita Mountains, southern Oklahoma. Earth and Planetary Science Letters, 109, 531–542.
  • Jackson, M., Rochette, P., Fillion, G., Banerjee, S. and Marvin, J. 1993. Rock magnetism of remagnetized Paleozoic carbonates: Lowe Temperature behaviour and susceptibility characteristics. Journal of Geophysical Research, 98, b4, 6217–6225.
  • Jelínek, V. 1977. The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Geofyzika Brno, 1–88.
  • Jaroszewski, W. 1982. Hydrotectonic phenomena at the base of the Križna nappe, Tatra Mts. In: M. Maheľ (Ed.), Alpine structural elements: Carpathian – Balkan - Caucasus – Pamir orogene zone. Veda, Bratislava, 137–148.
  • Jordanova, N., Henry, B., Jordanova, D., Ivanov, Z., Dimov, D. and Bergerat, F. 2001. Paleomagnetism in northwestern Bulgaria: geological implications of widespread remagnetization. Tectonophysics, 343, 79–92.
  • Juárez, M.T., Lowrie, W., Osete, M.L. and Meléndez, F. 1998. Evidence for widespread Cretaceous remagnetization in the Iberian Range and its relation with the rotation of Iberia. Earth and Planetary Science Letters, 160, 729–743.
  • Juárez, M.T., Osete, M.L., Vegas, R., Langereis, C.G. and Meléndez, G. 1996. Palaeomagnetic study of Jurassic limestones from the Iberian Range (Spain): tectonic implications. In: Morris, A. and Tarling, D.H. (Eds), Palaeomagnetism and tectonics of the Mediterranean region, Geological Society, London, Special Publications, 105, 83–90.
  • Jurewicz, E. 2005. Geodynamic evolution of the Tatra Mts. And the Pieniny Klippen Belt (Western Carpathians): problems and comments. Acta Geologica Polonica, 55, 295–338.
  • Jurewicz, E., Gireń, B. and Steller, J. 2007. Cavitation erosion - a possible cause of the mass loss within thrust zones in the Tatra Mts., Poland. Acta Geologica Polonica, 57, 305–323.
  • Jurewicz, E. and Słaby, E. 2005. The Zadnie Kamienne “ravenous” shear zone (High-Tatric Nappe) – conditions of deformation. Geological Quarterly, 48, 371–382.
  • Katz, B., Elmore, R.D., Cogoini, M., Engel, M.H. and Ferry, S. 2000. Associations between burial diagenesis of smectite, chemical remagnetization and magnetite authigenesis in the Vocontian trough, SE France. Journal of Geophysical Research, 105, b1, 851–868.
  • Kechra, F., Vandamme, D. and Rochette, P. 2003. Tertiary remagnetization of normal polarity in Mesozoic marly limestone from SE France. Tectonophysics, 362, 219–238.
  • Kent, D.V. 1985. Thermoviscous remagnetization in some Appalachian limestones. Geophysical Research Letters, 12, 805–808.
  • Kirschvink, J.L. 1980. The least square line and plane and the analysis of paleomagnetic data. Journal of Royal Astronomical Society, 62, 699–718.
  • Kirker, A. and McClelland, E. 1996. Application of nand tectonic rotations and inclination analysis to a high-resolution palaeomagnetic study in the Betic Cordillera. In: Morris, A. and Tarling, D.H. (Eds), Palaeomagnetism and Tectonics of the Mediterranean Region, Geological Society, London, Special Publication, 105, 19–32.
  • Kováč, M., Kráľ, J., Márton, E., Plašienka D. and Uher, P. 1994. Alpine uplift history of the Central Western Carpathians: geochronological, paleomagnetic, sedimentary and structural data. Geologica Carpathica, 45, 83–96.
  • Kováč, M., Marko, F. and Nemčok, M. 1990. Neogene history of intramontane basins in the western part of the Carpathians. Rivista Italiana di Paleontologia e Stratigrafia, 96, 381–404.
  • Lewandowski, M., Nowożyński, K. and Werner, T. 1997. PDA – a package of FORTRAN programs for paleomagnetic data analysis (manuscript).
  • Lewchuk, M.T., Al.-Aasm, I.S., Symons, D.T.A. and Gillen, P. 2000. Late Laramide dolomite recrystallization of the Husky Rainbow “A” hydrocarbon Devonian reservoir, NW Alberta, Canada. Paleomagnetic and geochemical evidence. Canadian Journal of Earth Sciences, 37, 17–29.
  • Lewchuk, M.T., Evans, M. and Elmore, R.D. 2003. Synfolding remagnetization and deformation: results from Paleozoic sedimentary rocks in West Virginia. Geophysical Journal International, 152, 266–279.
  • Lowrie, W. 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17, 159–162.
  • Lowrie, W. and Hirt, A.M. 1987. Anisotropy of magnetic susceptibility in the Scaglia Rossa pelagic limestone. Earth and Planetary Science Letters, 82, 349–356.
  • McCabe, C. and Elmore, R.d. 1989. The occurrence and origin of late Paleozoic remagnetization in the sedimentary rocks of North America. Reviews of Geophysics, 27, 471–494.
  • McCaig, A.M. and McClelland, E. 1992. Paleomagnetic techniques applied to thrust belts. In: McClay, K.R (Ed.), Thrust Tectonics, pp. 209–216. Chapman and Hall.
  • McFadden, P.L. 1990. A new fold test for paleomagnetic studies. Geophysical Journal International, 103, 163–169.
  • Maheľ, M. 1985. Geologická stavba Strážovských vrchov (Geological structure of the Strážovske vrchy Mts), 221 pp. Geologický Ústav D. Štúra; Bratislava.
  • Michalík, J. 1995. Lower Cretaceous stratigraphy, facies, faunas and Tethyan/Boreal influences in the Western Carpathians. Cretaceous Research, 16, 299–310.
  • Michalík, J. 2007. Sedimentary rock record and microfacies indicators of the latest Triassic to mid-Cretaceous tensional development of the Zliechov Basin (Central West Carpathians). Geologica Carpathica, 58, 443–453.
  • Michalík, J., Lintnerová, O., Gażdzicki, A. and Soták, J. 2007. Record of environmental changes in the Triassic/Jurassic boundary interval in the Zliechov Basin, Western Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 71–88.
  • Michalík, J., Vašíček, Z. and Borza, V. 1990. Aptychi, tintinnids and stratigraphy of the Jurassic – Cretaceous boundary beds in the Strážovce section, Central Western Carpathians, Western Slovakia). Knihovnička Zemniho plynu a nafty, 9a, 69–92.
  • Middleton, M. F. and Schmidt, P.W. 1982. Paleothermometry of the Sydney Basin. Journal of Geophysical Research, 87, 5351–5359.
  • Oliva-Urcia, B., Pueyo, E.L. and Larrasoana, J.C. 2008. Magnetic reorientation induced by pressure solution: a potential mechanism for orogenic scale remagnetizations. Earth and Planetary Science Letters, 265, 525–534.
  • Opdyke, N.D. and Channell, J.E.T. 1996. Magnetic stratigraphy, 346 pp. Academic Press; San Diego.
  • Plašienka, D. 1995. Passive and active margin history of the northern tatricum (Western Carpathians, Slovakia). Geologische Rundschau, 84, 748–760.
  • Plašienka, D. 1996. Mid-Cretaceous (120-80 Ma) orogenic processes in the Central Western Carpathians: brief review and interpretation of data. Slovak Geological Magazine, 3-4/96, 319–324.
  • Plašienka, D., Grecul, P., Putiš, M., Kováč, M. and Hovorka, D. 1997. Evolution and structure of the Western Carpathians: an overview. In: Grecul, P., Hovorka, D. and Putiš M. (Eds), Geological evolution of the Western Carpathians. Mineralia Slovaca – Monograph, Bratislava, pp. 1–24.
  • Plašienka, D. and Prokešova, R. 1996. Towards an evolutionary model of the Krížna cover nappe (Western Carpathians, Slovakia). Slovak Geological Magazine, 3-4/96, 279–286.
  • Plašienka, D. and Soták, J. 1996. Rauhwackized carbonate breccias in the West Carpathian nappe edifice: introductory remarks and preliminary results Slovak Geological Magazine, 3-4/96, 287–291.
  • Polák, M., Ondrejičková, A. and Wieczorek, J. 1998. Lithobiostratigraphy of the Ždiar Formation of the Križna nappe (Tatry Mts.). Slovak Geological Magazine, 4, 35–52.
  • Pueyo, E.l., Mauritsch, H.J., Gawlick, H-J., Scholger, R. and Frisch, W. 2007. New evidence for block and thrust sheet rotations in the central northern Calcareous Alps deduced from two pervasive remagnetization events. Tectonics, 26, TC5011, doi: 10.1029/2006/TC001965.
  • Pueyo, E. L., Pocoví, A., Parés, J.M., Millán, H. and Larrasoana, J.C. 2003. Thrust ramp geometry and spurious rotations of paleomagnetic vectors. Studia Geophysica & Geodaetica, 47, 331–358.
  • Pullaiah, G., Irving, E., Buchan, K.L. and Dunlop, D.J. 1975. Magnetisation changes caused by burial and uplift. Earth and Planetary Science Letters, 28, 133–143.
  • Skiba, M. and Michalik, M. 1999. Origin of non-carbonate components in Triassic carbonate rocks from the Križna unit in the Tatra Mts. Mineralogical Society of Poland -Special Papers, 14, 122–123.
  • Spötl, C., Kunk, M. J., Ramseyer, K. and Longstaffe, F.J. 1998. Authigenic potassium feldspar: a tracer for the timing of palaeofluid flow in carbonate rocks, Northern Calcareous Alps, Austria. In: Parnell, J. (Ed.), Dating and Duration of Fluid Flow and Fluid-Rock Interaction. Geological Society, London, Special Publications, 144, 107–128.
  • Stamatakos, J. and Kodama, K.P. 1991. Flexural flow folding and the paleomagnetic fold test: an example of strain reorientation of remanence in the Mauch Chunk formation. Tectonics, 10, 807–819.
  • Suk, D., Peacor, D. R. and Van der Voo, R. 1990. Replacement of pyrite framboids by magnetite in limestone and implications for paleomagnetism. Nature, 345, 611–613.
  • Suk, D., Van der Voo, R. and Peacor, D.R. 1993. Origin of magnetite responsible for remagnetization of Early Palaeozoic limestones of New York state. Journal of Geophysical Research, 98, 419–434.
  • Tarling, D.H. and Hrouda, F. 1993. The Magnetic Anisotropy of Rocks, 217 pp. Chapman and Hall; London.
  • Van Velzen, A. 1992. Magnetic minerals in Pliocene and Pleistocene marine marls from Southern Italy. Rock magnetic properties and alteration during thermal demagnetisation. Geologica Ultraiectina, 122, 154 pp.
  • Vašíček, Z., Michalík, J. and Reháková, D. 1994. Early Cretaceous stratigraphy, paleogeography and life in Western Carpathians. Beringeria, 10, 3–168.
  • Villalain, J.J., Fernández – González, G., Casas, A. M. and Gil-Ilmaz, A. 2003. Evidence for Cretaceous remagnetization in the Cameros Basin (North Spain): implications for basin geometry. Tectonophysics, 377, 101–117.
  • Villalain, J.J., Osete, M.L., Vegas, R., Garcia – Duenas, A. and Heller, F. 1996. The Neogene remagnetization in the western Betics: a brief comment on the reliability of palaeomagnetic directions. In: Morris, A. and Tarling, D.H. (Eds), Palaeomagnetism and tectonics of the Mediterranean Region, Geological Society, London, Special Publications, 105, 33–41.
  • Weil, A.B. and Van der Voo, R. 2002. Insights into the mechanism for orogen-related carbonate remagnetization from growth of authigenic Fe-oxide: A scanning electron microscopy and rock magnetic study of Devonian carbonates from northern Spain Journal of Geophysical Research, 107, B4, DOI 10.1029/2001JB000200.
  • Xu, W.R., Van der Voo, R. and Peacor, D.R. 1998. Electron microscopic and rock magnetic study of remagnetized Leadville carbonates, central Colorado, Tectonophysics, 296, 333–362.
  • Zwing, A., Matzka, J., Bachtadse, V. and Soffel, H.C. 2005. Rock magnetic properties of remagnetized Palaeozoic clastic and carbonate rocks from the NE Rheinish massif, Germany. Geophysical Journal International, 160, 477–486.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.