Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ferroan dolomite cement in Cambrian sandstones : burial history and hydrocarbon generation of the Baltic sedimentary basin

Warianty tytułu
Języki publikacji
The conditions and timing of carbonate cementation in Cambrian sandstones of the Baltic sedimentary basin were determined by oxygen and carbon stable isotope and chemical data in combination with optical and cathodoluminescence petrographic studies. Studied samples represent a range in present burial depth from 340 to 2150 m. The carbonate cement is dominantly ferroan dolomite that occurs as dispersed patches of poikilotopic crystals. Temperatures of dolomite precipitation, based on [delta^18] O values, range from 27..degrees] C in the shallow buried to 95..degrees..C in the deep buried sandstones. The burial history modelling points to development of most of the dolomite cement during rapid Silurian-Devonian subsidence and Carboniferous-early Permian uplift. A wide range of precipitation temperatures indicate that temperature was not a major factor in triggering the carbonate cementation. Dolomite precipitation is related to early stages of organic matter maturation and thus to the oil generation history in the basin. [delta^13] C values vary from +0.03 [per mil] to - 6.2 [per mil] (PDB), suggesting limited addition of carbon from an organic source, with the major part derived from marine bicarbonate. The sourcing of carbon from the organic-rich Cambrian shales is identified from the distribution of [delta^13] C values in the dolomite cement within the Cambrian section. The chemical composition of the dolomite cement shows a depth-controlled trend that is coincident with the present-day hydrochemical zonation of the Cambrian aquifer. The increase in the Fe content of the dolomite towards the deeper buried part of the Baltic basin is related to increasing sourcing of ions (Fe and Mg) from adjacent shales.
Opis fizyczny
Bibliogr. 53 poz.,Rys., wykr.,
  • Institute of Geology and Geography Lithuania, Department of Regional Geology, T. Sevcenkos 13, LT-2600 Vilnius, Lithuania,
  • ALLEN, J.R. & MATTHEWS, R.K. 1988. Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29, 297-317.
  • BALLENTINE, C.J., O’NIONS, R.K. & COLEMAN, M.L. 1996. A Magnus opus: helium, neon and argon isotopes in North Sea oilfield. Geochimica et Cosmochimica Acta, 60, 831-849.
  • BEUKES, N.J., KLEIN, C., KAUFMAN, A.J. & HAYES, J.M. 1990. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Economic Geology, 85, 663-90.
  • BJØRKUM, P.A. & WALDERHAUG, O. 1990. Geometrical arrangement of calcite cementation within shallow marine sandstones. Earth-Science Reviews, 29, 145-161.
  • BOLES, J.R. & FRANKS, S.G. 1979. Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 55-77.
  • BRANGULIS, A.P., KANEV, S.V., MARGULIS, L.S. & POMERANTSEVA, R.A. 1993. Geology and hydrocarbon prospects of the Palaeozoic in the Baltic region. In: PARKER, J.R. (Ed.), Petroleum Geology of NW Europe. Proceedings of the 4th Conference, London March-April 1992. Geological Society, 1993.
  • DUTTON, S.P. & LAND, L.S. 1985. Meteoric burial diagenesis of Pennsylvanian arkosic sandstones, Southwestern Anadarko Basin, Texas. AAPB Bulletin, 69, 22-38.
  • EHRENBERG S.N., PICKARD N.A.H., SVANA T.A., OXTOBY N.H. 2002. Cement geochemistry of photozoan carbonate strata (Upper Carboniferous-Lower Permian), Finnmark carbonate platform, Barents Sea. Journal of Sedimentary Research, 72. 95-115.
  • FRANKS, G.F. & FORESTER R.W. 1984. Relationship among secondary porosity, pore-fluid chemistry and carbon dioxide, Texas Gulf Coast. AAPG Memoir, 37, 63-79.
  • HASZELDINE R.S., MACAULAY C.I., MARCHAND A., WILKINSON M., GRAHAM C.M., CAVANAGH A. & FALICK A.E., COUPLES. 2000. Sandstone cementation and fluids in hydrocarbon basins. Journal of Geochemical Exploration, 69-70, 195-200.
  • HAWKINS, P.W. 1978. Relationship between diagenesis, porosity reduction, and oil emplacement in late Carboniferous sandstone reservoirs, Bothamsall Oilfield, E Midlands. Journal of the Geological Society London, 135, 7-24.
  • HENDRY, J.P., WILKINSON, M. & FALLICK, A.E. 2000a. Disseminated ‘jigsaw piece’ dolomite in Upper Jurassic shelf sandstones, Central North Sea: an example of cement growths during bioturbation? Sedimentology, 47, 631-644.
  • HENDRY, J.P., WILKINSON, M., FALLICK, A.E. & HASZELDINE, R.S. 2000b. Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the Central North Sea. Journal of Sedimentary Research, 70, 227-239.
  • HOEFS, J. 1987. Stable isotope geochemistry. 241 pp. Springer-Verlag; Berlin.
  • HUDSON, J.D. 1977. Stable isotopes and limestone lithification. Journal of the Geological Society London, 133, 637-660.
  • JANKAUSKAS, T. & LENDZION, K. 1992. Lower and Middle Cambrian acritarch-based biozonation of the Baltic Syneclise and adjacent areas (East European Platform). Przegląd Geologiczny, 9, 519-524.
  • KADUNIENE, E. 1978. Distribution of the organic matter in the deposits of Caledonian geotectonic stage in the Baltic syneclise. Achievements and perspectives of the geological researches of the Lithuanian SSR, Vilnius, 135-138.
  • KANTOROWICZ, J.D., BRYANT, I.D. & DAWANS, J.M. 1987. Controls on the geometry and distribution of carbonate cements in Jurassic sandstones: Bridport Sands, southern England and Viking Group, Troll Field, Norway. In: MARSHALL, J.D. (Ed.), Diagenesis of Sedimentary Sequences. Geological Society of London Special Publication, 36, 103118.
  • KILDA, L. 2002. Reservoir properties distribution within the Middle Cambrian Deimena Group sandstone in west Lithuania. Abstract of doctoral dissertation. Vilnius. 35p.
  • KILDA, L. & FRIIS, H. 2002. The key factors controlling reservoir quality of the Middle Cambrian Deimena Group sandstone in West Lithuania. Bulletin of the Geological Society of Denmark. 49, 25-39.
  • KIRSIMÄE, K., JØRGENSEN, P. & KALM, V. 1999. Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals, 34, 151-163.
  • KRAJEWSKI, K.P. 2004. Carbon and oxygen isotopic survey of diagenetic carbonate deposits in the Agardhfjellet Formation (Upper Jurassic), Spitsbergen: preliminary results. Polish Polar Research, 25, 27-43.
  • LAND, L.S. 1983. The applications of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments. In: ARTHUR M.A., ANDERSON T.F., KAPLAN I.R., VEISER J. & LAND L.S., Stable Isotopes in Sedimentary Geology: SEPM Short Course, 10, Tulsa, 4.1-4.22.
  • LASHKOVA, L.N. 1979. Lithology, facies and reservoir properties of Cambrian deposits of South Baltic region. 102pp. Nedra; Moscow. [In Russian]
  • LOHMANN, K.C. 1988. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: JAMES, N.P., CHOQUETTE, P.W. Paleokarst, pp. 58-80. Springer-Verlag; New York.
  • LOHMANN, K.C. & WALKER, J.C.J. 1989. The δ18O record of Phanerozoic abiotic marine calcite cements. Geophysical Research Letters, 16, 319–322.
  • LONGSTAFFE, F.J. 1987. Stable isotope studies of diagenetic processes. In: KYSER T.K. (Ed.), Short course in stable isotope geochemistry of low temperature fluids. Mineralogical Association of Canada, 13, 187-241.
  • LUNDEGARD, P.D. & LAND, L.S. 1986. Carbon dioxide and organic acids: their role in porosity enhancement and cementation, Paleogene of the Texas Gulf Coast. In: GAUTIER D.L. (Ed.), Roles of Organic Matter in Sediment Diagenesis. SEPM Special Publication, 38, 129-146.
  • MAHON, K.I., HARRISON, T.M. & MCKEEGAN, K.D. 1998. The thermal and cementation histories of a sandstone petroleum reservoir, Elk Hills, California: Part 2. In situ oxygen and carbon isotopic results. Chemical Geology, 152, 257-271.
  • MACAULAY, C.I., FALLICK, A.E., MCAULAY, G.E., WATSON, R.S. & STEWART R.N.T. 2000. Oil migration makes the difference: regional distribution of carbonate cement δ13C in northern North Sea Tertiary Sandstones. Clay Mineralogy, 35, 165-180.
  • MILLIKEN, K.L., LAND, L.S. & LOUCKS, R.G., 1981. History of burial diagenesis determined from isotopic geochemistry, Frio Formation, Brazoria County, Texas. AAPG Bulletin, 65, 1397-1413.
  • MILLIKEN, K.L., MACK, L.E. & LAND, L.S. 1994. Elemental mobility in sandstones during burial: Wholerock chemical and isotopic data, Frio Formation, south Texas. Journal of Sedimentary Research, A64, 788-796.
  • MOLENAAR, N., CYZIENE J. & SLIAUPA, S. 2007. Quartz cementation mechanisms: Baltic Cambrian sandstones. Sedimentary Geology, 195, 135-159
  • MORAD, S. 1998. Carbonate cementation in sandstones: distribution patterns and geochemical evolution. In: MORAD, S. (Ed.), Carbonate Cementation in Sandstones. IAS Special Publication, 26, 1-26
  • NELSON, C.S. & SMITH A.M. 1996. Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate cements and limestones: a synthesis and review. New Zealand Journal of Geology and Geophysics, 39, 93-107.
  • PAXTON, S.T., SZABO, J.O., AJDUKIEWICZ, J.M., & KLIMENTIDIS, R.E., 2002. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs. AAPG Bulletin, 86, 2047-2067.
  • POPRAWA, P., SLIAUPA, S., STEPHENSON, R. & LAZAUSKIENE, J. 1999. Vendian-Early Palaeozoic subsidence history of the Baltic Basin: Geodynamic implications. Tectonophysics, 314, 219-239.
  • RAIDLA, V., KIRSIMÄE, K., BITYUKOVA, L., JOELEHT, A., SHOGENOVA, A. & SLIAUPA, S. 2006. Lithology and diagenesis of the poorly consolidated Cambrian siliciclastic sediments in the northern Baltic sedimentary Basin. Geological Quarterly, 50, 395-406.
  • RICHTER, D.K., GOTTE, TH., GOTZE, J. & NEUSER, R.D. 2003. Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineralogy and Petrology, 79, 127-166.
  • SAIGAL, G.C. 1987. Carbonate cements in clastic reservoir rocks from offshore Norway – relationship between isotope composition, textural development and burial depth. In: MARSHALL, D.E. (Ed.), Diagenesis of Sedimentary Sequences. Geological Society London Special Paper, 36, 313-324.
  • SCHLEICHER, M., KÖSTER, J., KILKE, H. & WEIL, W. 1993. Hydrocarbons and organic matter in the Cambrian of Northern Poland. In: ØIGARD, K. (Ed.), Organic Geochemistry, 16th International Meeting on Organic Geochemistry, Stavanger 1993, 35-39.
  • SCHLEICHER, M. 1994. Sedimentologie, Diagenese und Muttergesteinsbewertung der kambrischen Siliziklastika in Nord- und Südostpolen. Clausthaler Geowissenschaftliche Dissertationen, 43, 251 pp. Clausthal-Zellerfeld.
  • SIKORSKA, M. & PACZESNA, J. 1997. Quartz cementation in Cambrian sandstones and the background of their burial history of the East European Craton. Geological Quarterly, 41, 265-272.
  • SLIAUPA, S., POPRAWA, P., LAZAUSKIENE, J. & STEPHENSON, R. 1997. The Palaeozoic subsidence history of the Baltic Syneclise in Poland and Lithuania. Geophysical Journal, Kiev, 19/1, 137-139.
  • SLIAUPA, S., RASTENIENE V., LASOVA, L. & SHOGENOVA, A. 2001. Factors controlling petrophysical properties of Cambrian siliciclastic deposits of central and western Lithuania. Research in Petroleum Technology, V, 157-180
  • SLIAUPA, S., LASKOVA, L., LAZAUSKIENE, J., LASKOVAS, J. & SIDOROV, V. 2004. The petroleum system of the Lithuanian offshore region. Zeitschrift für Angewandte Geologie, Sonderheft, 2, 41-59.
  • SMITH, N.D. 1992. The diagenesis and overpressuring of the Upper Jurassic Fulmar Formation, UK central North Sea. PhD Thesis, pp. 399. University of Liverpool.
  • STEWART, R.N.T., HASZELDINE, R.S., FALLICK, A.E.,WILKINSON, M. & MACAULAY, C. 2000. Regional distribution of diagenetic carbonate cement in Palaeocene deepwater sandstone: North Sea. Clay Minerals, 35, 123-137.
  • VEIZER, J., BRUCKSCHEN, P., PAWELLEK, F., DIENER, A., PODLAHA, O.G., CARDEN, G.A.F., JASPER, T., KORTE, C., STRAUSS, H., AZMY, K. & ALA, D. 1997. Oxygen isotopic evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 159-172.
  • WALDERHAUG, O. 1994. Temperatures of quartz cementation in Jurassic sandstones from the Norwegian continental shelf – evidence from fluid inclusions. Journal of Sedimentary Research, A64, 311-323.
  • WINTSCH, R.P. & KVALE, C.M., 1994. Differential mobility of elements in burial diagenesis of siliciclastic rocks. Journal of Sedimentary Research, A64, 349-361.
  • WORDEN, R.H., COLEMAN, M.L. & MATRAY, J.M. 1999. Basin scale evolution of formation waters: A diagenetic and formation water study of the Triassic Chunoy Formation, Paris Basin. Geochimica et Cosmochimica Acta, 63, 213-2528.
  • ZDANAVICIUTE, O. & SWADOWSKA, E. 2002. Petrographic and pyrolysis-gas chromatography investigations of the Lower Palaeozoic organic matter of Lithuania. Geologija, 40, 15-22.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.