Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Archives of Thermodynamics

Tytuł artykułu

Thermal design of automotive HVAC condensers for mixed flow regimes in minichannels

Autorzy Skiepko, T. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The air cooled automotive condensers under study are of brazed aluminium tube and center, consisting of one row array of horizontal parallel multi-port flat tubes with corrugated louver fins on the air side. Each tube is with a number of smooth parallel minichannels for internal flow of refrigerant. The analysis uses decomposition of the condenser along refrigerant flow path into specific different zones as follows: two single phase zones, namely: superheated and subcooled, and a few zones of two phase flow that can appear along some specific condensation paths to be: annular/intermittent/bubble or annular/annular-wavy/intermittent/bubble or annular/wavy/stratified. The approach presented is based on two phase flow regimes and corresponding experimental correlations for heat transfer and pressure drop. The heat transfer prediction is performed using [epsilon] - NTU[o] methodology.Results of the analysis refer to variations in the flow regimes and vapour quality along the condensation path, overall heat transfer rate, and for particular zones: contributed thermal resistances, heat transfer effectivenesses, flow lengths, heat transfer rates.
Słowa kluczowe
PL analiza przepływu ciepła   kondensatory   minikanały  
EN condensers   heat flow analysis   minichannels  
Wydawca Wydawnictwo Instytutu Maszyn Przepływowych PAN
Komitet Termodynamiki i Spalania PAN
Czasopismo Archives of Thermodynamics
Rocznik 2006
Tom Vol. 27, no. 1
Strony 53--74
Opis fizyczny Wykr., rys., tab.,Bibliogr. 24 poz.,
autor Skiepko, T.
  • Białystok Technical University, WiejsJca 45c, 15-351 Białystok, Poland
[1] KAKAÇ S., BOILERS: Evaporators and Condensers, Wiley&Sons, New York, 1991.
[2] LEE G. H., YOO J. Y.: Performance analysis and simulation of automobile air conditioning system, Int. J. of Refrigeration, Vol. 23(2000), 243-254.
[3] BANSAL P. K., CHIN T. C.: Design and modeling of hot-wall condensers in domestic refrigerators, Appl. Thermal Eng., Vol. 22(2002), 1601-1617.
[4] CAVALLINI A., ZECCHIN R.: Proc. 13th Int. Congress Refrig., Washington, 1971, (quoted in [1]).
[5] JABARDO J. M. SAIZ, MAMANI W. G.: Modeling and experimental evaluation of parallel flow micro channel condensers, J. Braz. Soc. Mech. Sci. & Eng. Vol. 25(2003), No. 2, 107-114.
[6] INCROPERA F. P., DEWITT D. P.: Fundamentals of Heat and Mass Transfer, Wiley, 1996.
[7] ESDU 86018, Effectiveness - NTU Relationships for the Design and Performance Evaluation of Two-Stream Heat Exchangers, ESDU, London, pp.92-107, July 1991 (quoted in [8]).
[8] WANG C. C., ET AL.: Data reduction for air-side performance of fin and-tube heat exchangers, Exp. Thermal and Fluid Science, Vol. 21(2000), 218-226.
[9] CHANG Y. J., WANG C. C.: A generalized heat transfer correlation for louver fin geometry, Int. J. of Heat and Mass Transfer, Vol. 40(1997), 533-544.
[10] VDI-Wärmeatlas, 4th edition, Sections Ea4-Ea12, VDI-Verlag, 1984 (in German).
[11] GNIELINSKI V.: New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem. Engg., Vol. 16(1976), 359-368.
[12] SHAH M. M.: A general correlation for heat transfer during film condensation inside pipes, Int. J. of Heat and Mass Transfer, Vol. 22(1979), 547-556.
[13] MCNAUGHT J. M., BUTTERWORTH D.: Film condensation of pure vapour, in Heat Exchanger Design Handbook 1998, Sec. 2.6.2, ed. G. F. Hewitt, Begel House Inc.
[14] COLLIER J. G., THOME J. R.: Convective Boiling and Condensation, 3rd edition, Oxford, 1994.
[15] ROUHANI Z., AXELSSON E.: Calculation of void volume fraction in the subcooled and quality boiling regions, Int. J. of Heat and Mass Transfer, Vol. 13(1970), 383-393.
[16] THOME J. R.: On recent advances in modeling of two-phase flow and heat transfer, Heat Transfer Eng., Vol. 24(2003), No. 6, 46-59.
[17] HEWITT G. F.: Gas-liquid flow, in Heat Exchanger Design Handbook 1998, Sec. 2.3.2, ed. G. F. Hewitt, Begel House Inc.
[18] DOBSON M.K., CHATO J. C.: Condensation in smooth tubes, J. Heat Transfer, Vol. 120(1998), No. 1, 193-213.
[19] CAVALLINI A., ET AL.: Condensation inside and outside smooth and enhanced tubes - a review of recent research, Int. J. of Refrigeration, Vol. 26(2003), 373-392.
[20] TAITEL Y., DUKLER A. E.: A model for prediction flow regime transitions in horizontal and near - horizontal gas-liquid flow, AIChE J., Vol. 22(1976), No. 1, 47-55.
[21] TABATABAI A., FAGHRI A.: A new two-phase flow map and transition boundary accounting for surface tension effects in horizontal miniature and micro tubes, J. Heat Transfer, Trans. ASME, Vol.123 (2001), 958-968.
[22] NIÑO V. G., ET AL.; two-phase flow visualization of R134A in a multiport microchannel tube, Heat Transfer Eng., Vol. 24(2003), No. 1, 41-52.
[23] SKIEPKO T.: Thermal design of a condenser operating under mixed regime on the two-phase flow side, 3rd Int. Symp. Two-Phase Flow Modelling and Experimentation 2004, eds. G.P. Celata, et al., Pisa, Italy, 2004.
[24] LEMMON E. W., ET AL.: Thermophysical Properties of Fluid Systems, Isothermal Properties for Ethane, 1,1,1,2-tetrafluoro- (R134a), NIST Chemistry WebBook, 2001.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BGPK-1469-5868