Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Archives of Thermodynamics

Tytuł artykułu

Numerical estimation of temperature-dependent thermophysical parameters by means of the inverse method - 2D approach

Autorzy Zmywaczyk, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN A modified Newton-Raphson method which has been proposed by Ching-yu Yang [3] to determine the temperature-dependent thermal conductivity and heat capacity from temperature measured at boundaries in a medium (ID case) has now been extended to estimate simultaneously the temperature dependent thermal conductivity k[r](T), k[x](T) and specific heat c[p](T) of an orthotropic material. It has been found that inverse solution of the problem was satisfactory if the degree of polynomials used to estimate the unknown parameters was not greater than three. In addition to this, a D-optimality criterion given by Beck [2] was utilised to determine the finał time of experiment t[f].
Słowa kluczowe
PL metoda Newtona-Raphsona   parametry termofizyczne   zagadnienie odwrotne  
EN inverse problems   Newton-Raphson method   thermophysical parameters  
Wydawca Wydawnictwo Instytutu Maszyn Przepływowych PAN
Komitet Termodynamiki i Spalania PAN
Czasopismo Archives of Thermodynamics
Rocznik 2006
Tom Vol. 27, no. 2
Strony 37--54
Opis fizyczny Tab., wz.,Bibliogr. 12 poz.,
autor Zmywaczyk, J.
[1] ALIFANOV O.M., ARTYUKHIN E.A., RUMYANTSEV S.V.: Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems, New York, Begell House 1995.
[2] BECK J.V., ARNOLD K.J.: Parameter estimation in engineering and science (Ist ed.). New York: John Wiley 1977.
[3] CHING-YU YANG: Determination of temperature dependent thermo-physical properties from temperature responses measured at medium’s boundaries, Int. J. Heat Mass Transfer, 43 (2000), 1261-1270.
[4] DOWDING K.J., BECK J.V., BLACKWELL B.F.; Estimation of directional-dependent thermal properties in a carbon-carbon composite, Int. J. Heat Mass Transfer, 39 (1996), No.15, 3157-3164.
[5] HUANG C.H, YAN J.Y.: An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity, Int. J. Heat Mass Transfer, 38 (1995), No. 18, 3433-3441.
[6] SCARPA F., BARTOLINI R., MILANO G.: State space (Kalman) estimator in the reconstruction of thermal diffusivity from noisy temperature measurements, High Temperature-High Pressures, 23 (1991), 633-642.
[7] WANG T.-Y., CHEN C.C.-P.: 3-D thermal ADI: a linear-time chip level transient thermal simulator, IEEE Transactions on Computer-aided of Integrated Circuits and Systems, 21, No. 21, Dec. 2002, 1434-1445.
[8] ZMYWACZYK J .: 2D coefficient inverse heat conduction problem, WAT Bulletin (Biuletyn WAT), nr 10 (494), October 1993, 101-110 (in Polish).
[9] ZMYWACZYK J., KONIORCZYK P., TERPIŁOWSKI J.: Numerical analysis of the solution of coefficient inverse heat coduction problem, Proc. IX Symp. of Heat and Mass Transfer, Augustów 1995, 485-494 (in Polish).
[10] ZMYWACZYK J., KONIORCZYK P.: Estimation of thermophysical parameters exemplified on solution of coefficient inverse heat conduction problem for an orthotropic cube, Proc. of the XIII Conference on Computer Methods in Mechanics, Poznań, May 5-8, 1997, 1463-1469.
[11] ZMYWACZYK J., KONIORCZYK P., SKÓRSKI M.; Estimation of the temperature-dependent thermal conductivity and specific heat for a cellular concrete, Proc. of the 8th Int. Symp. on Temperature and Thermal Measurements in Industry and Science TEMPMEKO’2001, Berlin, Germany 19-21 June 2001, s.101 (abstracts), 1169-1174.
[12] User’s manual FORTRAN subroutines for mathematical applications. Math/Library version 2.0, IMSL Inc., Houston, Texas USA. (1991).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BGPK-1469-5821