Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Archives of Thermodynamics

Tytuł artykułu

CFD modelling of laminar film and spontaneous condensation in presence of noncondensable gas

Autorzy Karkoszka, K.  Anglart, H. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN A new mechanistic model for prediction of wall condensation in presence of noncondensable gas is presented. The model is based on the resolution of flow and temperature fields in the boundary layer to allow for prediction of diffusion and accumulation of noncondensable gas in the vicinity of a liquid film. Additionally, when the temperature in the vapour gas mixture drops locally below the critical value defined by the Wilson's line, the fog formation is modelled. Both accumulation of noncondensable gas and fog formation can significantly influence the heat transfer process and thus they must be carefully modelled in many industrial applications. In particular, the degradation of heat transfer rates has an essential influence on the performance of safety systems in nuclear power plants. The present model has been implemented into a commercial computational fluid dynamics code CFX-4.
Słowa kluczowe
PL bezpieczeństwo nuklearne   CFD   gaz niekondensatowy   kondensacja   przepływ wielofazowy   wymiana ciepła  
EN CFD   condensation   heat transfer   multiphase flow   noncondensable gas   nuclear safety  
Wydawca Wydawnictwo Instytutu Maszyn Przepływowych PAN
Komitet Termodynamiki i Spalania PAN
Czasopismo Archives of Thermodynamics
Rocznik 2006
Tom Vol. 27, no. 2
Strony 23--36
Opis fizyczny Wykr., wz.,Bibliogr. 11 poz.,
autor Karkoszka, K.
autor Anglart, H.
  • Nuclear Reactor Technology, School of Engineering Sciences, Royal Institute of Technology, SE-106 91, Stockholm, Sweden
[1] AEA Technology plc, CFX 4.4, Solver Manual, CFX International, AEA Technology, Harwell, 2000.
[2] Bird R.B., STEWART W.E., LIGHTFOOT E.N.: Transport Phenomena, John Wiley & Sons, INC., 2002, Chap. 18.
[3] CHOI K.Y., CHUNG H.J., NO H.C.: Direct-contact condensation heat transfer model in RELAP5/MOD3.2 with/without non-condensable gases for horizontally stratified flow, N. Eng. and Design, 211 (2002), 139-151.
[4] COLBURN, A.J., HOUGEN, O.A.: Design of cooler condensers for mixtures of vapours with non-condensing gases, Ind. Eng, Chem., 26 (1934), 1178-1182.
[5] GHIAASIAAN, S.M., KAMB0J, B.K., ABDEL-KHALIK, S.I.: Two-fluid modeling of the condensation in the presence of non-condensable gas in two-phase flows, Nucl. Sci. Eng., 119 (1995), 1-17.
[6] KARL J., HEIN D.: Effect of spontaneous condensation on heat transfer in the presence of non condensable gases, Proc. of the 5th ASME/JSME Joint Thermal Eng. Conf., March 15-19, San Diego, California, 1999.
[7] MARTIN-VALDEPENAS, J.M., JIMENEZ, M.A., MARTIN-FUERTES, F., FERNANDEZ-BENITEZ, J.A.: Comparison of film condensation models in presence of non-candensable gases implemented in a CFD code, Heat Mass Transfer, 41 (2005), 961-976.
[8] MIKIELEWICZ J., RAGEB A.M.A.: Simple theoretical approach to direct-contact condensation on subcooled liquidfilm, Int. J. Heat Mass Transfer, Vol. 38 (1995), 557-562.
[9] SPARROW, E.M., LIN, S.H.: Condensation heat transfer in the presence of non-condensable gas, J. Heat Transfer 86 1964, 430-436.
[10] SPARRO, E.M., MINKOWYCZ, W.J., SADDY, M.: Forced convection in the presence of a non-condensable gas, Int. J. Heat Mass Transfer, 10 1967, 1829-1845.
[11] STEVANOVIC V.D., STOSIC Z.V., STOLL U.: Condensation induced non-condensable accumulation in a non-vented pipe, Int. J. of Heat and Mass Transfer, 48 (2005), 83-103.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BGPK-1469-5769