Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BATD-0005-0003

Czasopismo

Materiały Elektroniczne

Tytuł artykułu

Nowoczesne materiały termoelektryczne - przegląd literaturowy

Autorzy Królicka, A.  Hruban, A.  Mirowska, A. 
Treść / Zawartość
Warianty tytułu
EN Advanced thermoelectric materials - literature review
Języki publikacji PL
Abstrakty
PL Odkrycie na początku XXI wieku nowych zjawisk oraz innowacyjnych metod wytwarzania pozwoliło na znaczny rozwój dziedziny materiałów termoelektrycznych oraz ich zastosowań. Rozwój ten idzie w parze z coraz większymi wymaganiami dotyczącymi pozyskiwania energii w wyniku eksploatacji paliw kopalnych i globalnego dążenia do zniwelowania tego zjawiska na rzecz rozwoju i wdrożenia odnawialnych źródeł energii. Artykuł stanowi przegląd aktualnej wiedzy na temat materiałów termoelektrycznych i zawiera: rys historyczny, podział materiałów, zjawiska występujące w termoelektrykach, metody ich wytwarzania, opis ich przydatności do budowy elementów termoelektrycznych oraz możliwości zastosowań. Podano również zalety technologii materiałów termoelektrycznych w porównaniu z innymi metodami odnawialnymi.
EN The discovery of new phenomena and innovative methods of production at the beginning of the 21st century has led to significant growth in the field of thermoelectric materials and their applications. The said progress is inextricably linked with new requirements for energy production as a result of fossil fuel depletion and global efforts to overcome this problem by developing and implementing renewable energy sources. This article provides an overview of current knowledge about thermoelectric materials including: the historical background, division of materials and phenomena in thermoelectrics, methods for their preparation, description of their suitability for the construction of thermoelectric elements and possible applications. The advantages of the thermoelectric technology are compared with those of other renewable methods.
Słowa kluczowe
PL materiały termoelektryczne   efekt Seebecka   efekt Peltiera   efekt Thomsona   generator termoelektryczny   moduł Peltiera   własności termoelektryczne  
EN thermoelectric materials   Seebeck effect   Thomson effect   Peltier effect   thermoelectric generator   Peltier module  
Wydawca Instytut Technologii Materiałów Elektronicznych
Czasopismo Materiały Elektroniczne
Rocznik 2012
Tom T. 40, nr 4
Strony 19--34
Opis fizyczny Bibliogr. 49 poz., rys.
Twórcy
autor Królicka, A.
autor Hruban, A.
autor Mirowska, A.
Bibliografia
[1] http://www.aztekium.pl/sites.py?tekst=1&kod=&lang=en
[2] Altenkirch E.: Über den Nutzeffekt der Thermosäule, Physikalische Zeitschrift, 1909, 10, 560 – 580
[3] Altenkirch, E.: Elektrothermische Kälteerzeugung und reversible elektrische Heizung, Physikalische Zeitschrift, 1911, 12, 920 – 924
[4] Telkes M.: The efficiency of thermoelectric generators., I. J. Appl. Phys., 1947, 18, 1116 – 1127
[5] Hempstead C.H., Encyclopedia of 20th-century technology, London, New York, Routledge, 2005, 674 - 676
[6] Boukai A.I.: Thermoelectric properties of bismuth and silicon nanowires, rozprawa dokt., USA, Pasadena 2008
[7] Harman T. C., Walsh M. P., Laforge B. E. & Turner G. W.: Nanostructured thermoelectric materials, J. Electron. Mater., 2005, 34, 19 - 22
[8] Venkatasubramanian, R., Silvola, E., Colpitts, T., O’Quinn, B.: Thin-film thermoelectric devices with high room - temperature figures of merit, Nature, 2001, 413, 597–602
[9] Hsu, K. F. et al.: Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit., Science,2004, 303, 818 – 821
[10] Vining C.B.: An inconvenient truth about thermoelectrics, Nature Mat., 2009, 8, 83 - 85
[11] Markowski P.: Własności termoelektryczne kompozytów grubowarstwowych, rozprawa dokt., Wrocław 2008, 12
[12] Jeżewski M., Fizyka, PWN, 1970, 411 - 413
[13] Sales B.C.: Critical overview of recent approaches to improved thermoelectric materials., Int. J. Appl. Ceram. Technol., 2007, 4, 291 - 296
[14] Bérardan D., 8th European Workshop on Thermoelectrics, 2nd Eur. Conf. on Thermoelectrics, Kraków, 2004
[15] Snyder G.J.: Small thermoelectric generators. The Electrochemical Society Interface, 2008, 54
[16] Kosuga A., Uno M., Kurosaki K.: Thermoelectric properties of stoichiometric Ag1−xPb18SbTe20 (x = 0, 0.1, 0.2)., J. of Alloys and Comp. 2005, 391, 288 - 291
[17] Min G., Rowe D.M.: A novel principle allowing rapid and accurate measurement of a dimensionless thermoelectric figure of merit, Meas. Sci. Techn., 2001, 12, 1261 - 1262
[18] Medlin D. L.: Interfaces in bulk thermoelectric Materials, current opinion in colloid & interface G, Science, 2009, 14, 226
[19] Zebarjadi M., Esfarjani K., Dresselhaus M.S., Ren Z.F., Chen G.: Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ. Sci., 5, 2012 - 5147
[20] Li J., Yeung T.C.A, Kam C.H.: Influence of electron scatterings on thermoelectric effect., J. Appl. Phys., 2012, 112, 034306
[21] Wang X.W., Lee H., Lan Y.C, Zhu G.H.: Enhanced Thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy., Appl. Phys. Let. 93, 193121, 1 - 3
[22] Joshi G., Lee H., Lan Y., Wang X: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys, Nano Lett. 2008, 12, 4670 - 4674
[23] Thonhauser T., Scheidemantel T. J., Sofo J.O.: Improved thermoelectric devices using bismuth alloys, Appl. Phys. Lett. 2004, 85, 588 - 590
[24] Ma Y., Hao Q., Poudel B., Lan Y.: Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks, Nano Lett. 2008, 8, 2580 - 2584
[25] Harman T. C., Spears D. L., Manfra M.J.: High thermoelectric figures of merit in PbTe quantum wells, J. Electron. Mater. 1996, 25, 1121
[26] Pei Y., Lensch-Falk J., Toberer E.S., Medlin D.L, Snyder G.J.: High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping, Adv. Funct. Mater., 2011, 21, 241
[27] Paul B., Rawat K., Banerji P.: Dramatic enhancement of thermoelectric power factor in PbTe:Cr co-doped with iodine, Appl. Phys. Lett., 2011, 98, 262101
[28] Pei Y., Shi X., Lalonde A., Wang H., Chen L.: Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 2011, 473
[29] Zhang Y., Day T., Sneadaker M.L.: A Mesoporous anisotropic n-Type Bi2Te3 monolith with low thermal conductivity as an efficient thermoelectric material. Adv. Mater., 2012, 10, 1 - 6
[30] Nolas G.S., Morelli D.T., Tritt T.M.: SKUTTERUDITES: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications., Annu. Rev. Mater. Sci., 1999, 29, 289
[31] Qiu P.F., Yang J., Liu R.H., Shi X., Huang X.Y., Snyder G.J.: High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb)., J. Appl. Phys., 2011, 109, 063713
[32] Puneet P., He J., Zhu S., Tritta T.M.: Thermoelectric properties and Kondo behavior in indium incorporated p-type Ce0.9Fe3.5Ni0.5Sb12 skutterudites., J. Appl. Phys., 2012, 112, 033710
[33] Shi X., Yang J., Salvador J. R., Chi M.: High-performance nanostructured thermoelectric materials, J. Am. Chem. Soc., 2011, 133, 7837
[34] Wang H., Li J.F., Zhou M., Sui T.: Synthesis and transport property of AgSbTe2 as a promising thermoelectric Compound, Appl. Phys. Lett., 2008, 93, 202106, 1-3
[35] Wang H., Li J.F., Zhou M., Nan C. W.: High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering., Appl. Phys. Lett., 2006, 88, 092104, 1 - 3
[36] Hsu K.F., Loo S., Guo F., Chen W., Dyck J.S., Polychroniadis E.K.:AgPb18+xSbTe20, LAST Science, 2004, 6, 303, 818 - 821
[37] http://www.elstudento.org/articles.php?article_id=924
[38] Suryanarayana C.: Mechanical alloying and milling., Prog. Mat. Sc., 2001, 46, 1 - 184
[39] Michalski A., Siemiaszko D.: Pulse Plasma Sintering of nanocrystalline WC-12Co cemented carbides, Inż. Mat., 2006, 3, 629
[40] Michalski A., Rosiński M.: Pulse plasma sintering technique: fundamentals and applications, Inż. Mat. 2010, 1, 7
[41] http://www.konstrukcjeinzynierskie.pl/images/stories/obrazki_sekcje/fragmenty_2012/listopad/schemat--urzadzenia-do-spiekania-metoda-SPS.jpg
[42] http://www.matint.pl/materialy-termoelektryczne.php
[43] http://www.geo.cornell.edu/eas/energy/_Media/edwards.png
[44] http://www.geo.cornell.edu/eas/energy/the_challenges/
[45] http://en.wikipedia.org/wiki/Wind_power
[46] http://www.ekoenergia.polska-droga.pl/ogrzewanie/89-konwersja-promieniowania-ssonecznego.html
[47] Venkatasubramanian R., Watkins C., Stokes D.Energy harvesting for electronics with thermoelectric devices using nanoscale materials, Conference: Electron Devices Meeting, 2007, 367-370
[48] http://www.biuletyn.agh.edu.pl/index.php?option=com_content&view=article&id=342:17&catid=45:grudzie-2010-nr-36
[49] http://forumees.pl/gfx/ees/userfiles/files/43_forum/s_dunin_wasowicz.pdf
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BATD-0005-0003
Identyfikatory