Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BATC-0009-0028

Czasopismo

Control and Cybernetics

Tytuł artykułu

Optimality system POD and a-posteriori error analysis for linear-quadratic problems

Autorzy Volkwein, S. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this paper an abstract linear-quadratic optimal control problem governed by an evolution equation is considered. To solve this problem numerically a reduced-order approach based on proper orthogonal decomposition (POD) is applied. The error between the POD suboptimal control and the optimal control of the original problem is controlled by an a-posteriori error analysis. However, if the POD basis has bad approximation properties, a huge number of POD basis function is required to solve the reduced-order problem with the desired accuracy. To overcome this problem, optimality system POD (OS-POD) is utilized, where the POD basis is chosen with respect to the optimization criteria.
Słowa kluczowe
EN optimal control   model reduction   proper orthogonal decomposition   a-posteriori error estimates   optimality system POD  
Wydawca Systems Research Institute, Polish Academy of Sciences
Czasopismo Control and Cybernetics
Rocznik 2011
Tom Vol. 40, no 4
Strony 1109--1124
Opis fizyczny Bibliogr. 23 poz., wykr.
Twórcy
autor Volkwein, S.
Bibliografia
Afanasiev, K. and Hinze, M. (2001) Adaptive control of a wake flow using proper orthogonal decomposition. Lecture Notes in Pure and Applied Mathematics, 216, 317-332.
Arian, E., Fahl, M. and Sachs, E.W. (2000) Trust-region proper orthogonal decomposition for flow control. Technical Report 2000-25, ICASE.
Benner, P. and Quintana-Ortí,E.S. (2005) Model reduction based on spectra projection methods. In: P. Benner, V. Mehrmann, D.C. Sorensen, eds., Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, 45, 5-48.
Dautray, R. and Lions, J.L. (1992) Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5: Evolution Problems I. Springer-Verlag, Berlin.
Grepl, M.A. and Kärcher, M. (2011) Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Acad. Sci. Paris, Ser. I, 349, 873-877.
Hintermüller, M., Ito, K. and Kunisch, K. (2003) The prima-dual active set strategy as a semi-smooth Newton method. SIAM J. Opt., 13, 865-888.
Hintermüller, M., Kopacka, I. and Volkwein, S. (2008) Mesh-independence and preconditioning for solving parabolic control problems with mixed control-state constraints. ESAIM: Control, Optimization and Calculus of Variations, 15, 626-652.
Hintermüller,M. and Ulbrich,M. (2004) A mesh-independence result for semismooth Newton methods. Math. Program. Ser. B, 101, 151-184.
Hinze, M. and Volkwein, S. (2008) Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Computat. Optim. and Appl., 39, 319-345.
Holmes, P., Lumley, J.L. and Berkooz, G. (1996) Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, Cambridge University Press.
Kahlbacher,M. and Volkwein, S. (2012) POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems. ESAIM: Mathematical Modelling and Numerical Analysis, 46, 491-511.
Kammann, E. (2010) Modellreduktion und Fehlerabschätzung bei parabolischen Optimalsteuerproblemen. Diploma thesis, Institute ofMathematics, Berlin University of Technology.
Kelley, C.T. (1999) Iterative Methods for Optimization. Frontiers in Applied Mathematics. SIAM, Philadelphia.
Kunisch, K. and Volkwein, S. (2002) Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal., 40, 492-515.
Kunisch,K. and Volkwein, S. (2008) Proper orthogonal decomposition for optimality systems. ESAIM: Mathematical Modelling and Numerical Analysis, 42, 1-23.
Lions, J.L. (1971) Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin.
Manzoni, A., Quarteroni, A. and Rozza, G. (2011) Shape optimization for viscous flows by reduced basis methods and free-form deformation. International Journal for Numerical Methods in Fluids (to appear).
Müller, M. (2011) Uniform Convergence of the POD method and Applications to Optimal Control. Ph.D thesis, University of Graz.
Nocedal, J. and Wright, S.J. (2006) Numerical Optimization. Springer Series in Operation Research, Second Edition.
Read, M. and Simon, B. (1980) Methods of Modern Mathematical Physics I: Functional Analysis Academic Press, Boston.
Sachs, E. and Volkwein, S. (2010) POD-Galerkin approximations in PDE constrained optimization. GAMM-Mitt., 33, 194-208.
Tonn,T., Urban,K. and Volkwein, S. (2011) Comparison of the reducedbasis and POD a-posteriori error estimators for an elliptic linear quadratic optimal control problem. Mathematical and Computer Modelling of Dynamical Systems, Special Issue: Model order reduction of parameterized problems, 17, 355-369.
Tröltzsch, F. and Volkwein, S. (2009) POD a-posteriori error estimates for linear-quadratic optimal control problms. Comput. Optim. Appl., 44, 83-115.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BATC-0009-0028
Identyfikatory