Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regularization and discretization of linear-quadratic control problems

Treść / Zawartość
Warianty tytułu
Języki publikacji
We analyze regularizations of a class of linear-quadratic optimal control problems with control appearing linearly. It is shown that if the optimal control is bang-bang or if a coercivity condition for the state variables is satisfied, the solutions are continuous functions of the regularization parameter. Combining error estimates for Euler discretizations of the regularized problems with those for the regularization error, we choose the regularization parameter in dependence of the meshsize to obtain optimal convergence rates for the discrete solutions. Numerical experiments confirm the theoretical findings.
Opis fizyczny
Bibliogr. 38 poz.
  • Alt, W. (1997) Discretization and Mesh-Independence of Newton’s Method for Generalized Equations. In: A.V. Fiacco, ed., Mathematical Programming with Data Perturbations V. Lecture Notes in Pure and Applied Mathematics, 195, Marcel Dekker, 1-30.
  • Alt, W., Baier, R., Gerdts, M. and Lempio, F. (2011) Approximations of linear control problems with Bang-bang solutions. Optimization, DOI: 10.1080/02331934.2011.568619
  • Alt,W., Baier,R., Gerdts,M. and Lempio,F. (2012) Error Bounds for Euler Approximation of Linear-Quadratic Control Problems with Bang-Bang Solutions. Numerical Algebra, Control and Optimization (to appear).
  • Alt, W., Bräutigam, N. and Rösch, A. (2007) Error Estimates for Finite Element Approximations of Elliptic Control Problems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization 27, 7-22.
  • Alt, W. and Bräutigam, N. (2009) Finite-Difference discretizations of quadratic control problems governed by ordinary elliptic differential equations. Comp. Optim. Appl. 43, 133-150
  • Alt, W. and Mackenroth, U. (1989) Convergence of finite element approximations to state constrained convex parabolic boundary control problems. SIAM J. Control Optim. 27, 718-736.
  • Casas,E., de los Reyes, J.C. and Tröltzsch,F. (2008) Sufficient secondorder optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. on Optimization 19, 616-643.
  • Casas,E. andTröltzsch,F. (2010) Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM: COCV 1, 581-600.
  • Deckelnick, K. and Hinze, M. (2010) A note on the approximation of elliptic control problems with bang-bang controls. Comp. Optim. Appl., DOI: 10.1007/s10589-010-9365-z
  • Dhamo, V. and Tröltzsch, F. (2011) Some aspects of reachability for paraboli boundary control problems with control constraints. Comp. Optim. Appl., 50, 75-110.
  • Dontchev, A.L. and Hager, W.W. (1993) Lipschitzian stability in nonlinear control and optimization. SIAM J. Control Optim. 31, 569-603.
  • Dontchev,A.L., Hager,W.W. and Malanowski,K. (2000) Error bounds for Euler approximation of a state and control constrained optimal control problem. Numer. Funct. Anal. and Optim. 21, 653-682.
  • Dontchev, A.L., Hager, W.W. and Veliov, V.M. (2000) Second-order Runge-Kutta approximations in constrained optimal control. SIAM J. Numer. Anal. 38, 202-226.
  • Dontchev,A.L. and Hager,W.W. (2001) The Euler approximation in state constrained optimal control. Math. Comp. 70, 173-203.
  • Ekeland, I. and Temam, R. (1976) Convex Analysis and Variational Problems. North Holland, Amsterdam-Oxford.
  • Felgenhauer, U. (2003) On stability of bang-bang type controls. SIAM J. Control Optim. 41, 1843-1867.
  • Felgenhauer, U. (2008) The shooting approach in analyzing Bang-bang extremals with simultaneous control switches. Control and Cybernetics 37, 307-327.
  • Felgenhauer, U., Poggiolini, L. and Stefani, G. (2009) Optimality and stability result for bang-bang optimal controls with simple and double switch behaviour. Control and Cybernetics 38, 1305-1325.
  • Hager, W.W. (1979) Multiplier methods for nonlinear optimal control. SIAM J. Control Optim. 17, 321-338.
  • Hinze, M. (2005) A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case. Comp. Optim. Appl. 30, 45-61.
  • Hinze, M. and Meyer, C. (2010) Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems. Comp. Optim.Appl. 46, 487-510.
  • Hinze, M. and Tröltzsch, F. (2010) Discrete concepts versus error analysis in pde constrained optimization. GAMM-Mit. 33, 148-163.
  • Lenhart, S. and Workman, J.T. (2007) Optimal Control Applied to Biological Models. Chapman & Hall/CRC.
  • Lions, J.L. (1971) Optimal Control of Systems Governed by Partial Differential. Springer Verlag.
  • Lorenz, D.A. and Rösch, A. (2010) Error estimates for joint Tikhonov- and Lavrentiev - regularization of constrained control problems. Applicable Analysis, 89, 1679-1691.
  • Malanowski, K. (1981) Convergence of Approximations vs. Regularity of Solutions for Convex, Control-Constrained Optimal-Control Problems. Appl. Math. Optim. 8, 69-95.
  • Malanowski,K., Büskens,C. and Maurer,H. (1997) Convergence of Approximations to Nonlinear Optimal Control Problems. Mathematical Programming with Data Perturbations V, 253-284.
  • Maurer,H., Büskens,C., Kim, J.H.R. and Kaya,C.Y. (2005) Optimization methods for the verification of second order sufficient conditions for Bang-bang controls. Optimal Control Applications and Methods 26, 129-156.
  • Maurer, H. and Osmolovskii, N.P. (2004) Second order sufficient conditions for time optimal bang-bang control. SIAM J. Control Optim. 42, 2239-2263.
  • Meyer, C. and Rösch, A. (2004) Superconvergence Properties of Optimal Control Problems. SIAM J. Contr. Opt. 43, 970-985.
  • Meyer, C., Rösch, A. and Tröltzsch, F. (2006) Optimal control of PDEs with regularized pointwise state constraints. Comp. Optim. Appl. 33, 209-228.
  • Neitzel, I. and Tröltzsch, F. (2008) On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints. Control and Cybernetics 37.
  • Seydenschwanz, M. (2010) Diskretisierung und Regularisierung linear-quadratischer Steuerungsprobleme. Diploma Thesis, Friedrich-Schiller-Universität Jena.
  • Tröltzsch, F. (2010a) Optimal Control of Partial Differential Equations - Theory, Methods and Applications. Graduate Studies in Mathematics, 112, American Mathematical Society.
  • Tröltzsch, F. (2010b) On Finite Element Error Estimates for Optimal Control Problems with Elliptic PDEs. In: I. Lirkov, S. Margenov, J. Wasniewski, eds., Large Scale-Scientific Computing. LNCS 5910, Springer, 40-53.
  • Tröltzsch, F. and Yousept, I. (2009) A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. Comp. Optim. Appl. 42, 43-66.
  • Veliov, V.M. (2005) Error analysis of discrete approximations to Bang-bang optimal control problems: the linear case. Control and Cybernetics 34, 967-982.
  • Wachsmuth, G. and Wachsmuth, D. (2011) Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var., 17, 858-886.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.