Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical experiments with model equations of cancer invasion of tissue

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this paper we investigate a mathematical model of cancer invasion of tissue, which incorporates haptotaxis, chemotaxis, proliferation and degradation rates for cancer cells and the extracellular matrix, kinetics of urokinase receptor, and urokinase plasminogen activator cycle. We solve the model using spectrally accurate approximations and compare its numerical solutions with laboratory data. The spectral accuracy allows to use low-dimensional matrices and vectors, which speeds up the computations of the numerical solutions and thus to estimate the parameter values for the model equations. Our numerical results demonstrate correlations between numerical data computed from the mathematical model and in vivo tumour growth rates from prostate cell lines.
Opis fizyczny
Bibliogr. 20 poz., wykr.
  • Faculty of Mathematics and Computer Science, University of Warmia and Mazury Słoneczna 54, 10-710 Olsztyn, Poland
  • Andreasen, P., Kjoller, L., Christensen, L. and Duffy, M. (1997) The urokinase-type plasminogen activator system in cancer metastasis: A review. International Journal of Cancer 72 (1), 1-22.
  • Andreasen, P., Egelund, R. and Petersen, H. (2000) The plazminogen activation system in tumor growth, invasion, and metastasis. Cellular and Molecular Life Sciences 57 (1), 25-40.
  • Bellomo, N. and Delitala, M. (2008) From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Physics of Life Reviews 5 (4), 183-206.
  • Bellomo, N. and Forni, G. (1994) Dynamics of tumor interaction with the host immune system. Math. Comput. Modelling 20 (1), 107-122.
  • Bellomo, N., Li, N. and Maini, P. (2008) On the foundations of cancer modelling: Selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18 (4), 593-646.
  • Canuto, C., Hussaini, M., Quarteroni, A. and Zang, T. (1998) Spectral Methods in Fluid Dynamics. Springer Verlag, New York.
  • Calvo, A., Xiao, N., Kang, J., Best, C., Leiva, I., Emmert-Buck, M., Jorcyk, C. and Green, J. (2002) Alterations in gene expression profiles during prostate cancer progression: functional correletions to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Research 62 (18), 5325-5335.
  • Chaplain, M. and Anderson, A. (2003) Mathematical modelling of tissue invasion. Cancer modelling and simulation. Chapman & Hall/CRCMath. Biol. Med. Ser., Boca Raton, FL, 269-297.
  • Chaplain, M. and Lolas, G. (2006) Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw. Heterog. Media 1 (3), 399-439.
  • De Angelis, E. and Lodz, B. (2008) On the kinetic theory for active particles: A model for tumor-immune system competition. Math. Comput. Modelling 47 (1-2), 196-209.
  • De Lillo, S., Salvatori, M. and Bellomo, N. (2007) Mathematical to ols of the kinetic theory of active particles with some reasoning on the model ling progression and heterogeneity. Math. Comput. Modelling 45 (5-6), 564-578.
  • Fornberg, B. (1996) A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge.
  • Holzer, R., MacDougall, C., Cortright, G., Atwood, K., Green, J. and Jorcyk, C. (2003) Development and characterization of a progressive series of mammary adenocarcinoma cell lines derived from the C3(1)/SV40 large T-antigen transgenic mouse model. Breast Cancer Research Treat 77 (1), 65-76.
  • Jackiewicz, Z., Jorcyk, C., Kolev, M. and Zubik-Kowal, B. (2009) Correlation between animal and mathematical models for prostate cancer progression. Comput. Math. Methods Med. 10 (4), 241-252.
  • Jorcyk, C., Kolev, M. and Zubik-Kowal, B. (2011) Mammary adenocarcinoma cell progression and numerical simulations. Integral Methods in Science and Engineering, Springer, in press.
  • Jorcyk, C., Kolev, M., Tawara, K. and Zubik-Kowal, B. (2011) Experimental versus numerical data for breast cancer progression. In preparation.
  • Kolev, M. (2005) A mathematical model of cellular immune response to leukemia. Math. Comput. Modelling 41 (10), 1071-1081.
  • Kolev, M. and Zubik-Kowal, B. (2011) Numerical solutions for a model of tissue invasion and migration of tumour cells. Journal of Biological Systems 19 (1), 33-46.
  • Lachowicz, M. (2005) Micro and meso scales of description corresponding to a model of tissue invasion by solid tumours. Math. Models Methods Appl. Sci. 15 (11), 1667-1683.
  • Liotta, L., Rao, C. and Barsky, S. (1983) Tumour invasion and the extracellular matrix. Lab. Invest. 49 (6), 636-649.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.